Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support pin_memory() in Multi{Embedding,Nested}Tensor and TensorFrame #437

Merged
merged 9 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
### Added

- Added support for inferring `stype.categorical` from boolean columns in `utils.infer_series_stype` ([#421](https://github.com/pyg-team/pytorch-frame/pull/421))
- Added `pin_memory()` to `TensorFrame`, `MultiEmbeddingTensor`, and `MultiNestedTensor` ([#437](https://github.com/pyg-team/pytorch-frame/pull/437))

### Changed

Expand Down
14 changes: 14 additions & 0 deletions test/data/test_multi_embedding_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -476,3 +476,17 @@ def test_cat(device):
# case: list of non-MultiEmbeddingTensor should raise error
with pytest.raises(AssertionError):
MultiEmbeddingTensor.cat([object()], dim=0)


def test_pin_memory():
met, _ = get_fake_multi_embedding_tensor(
num_rows=2,
num_cols=3,
)
assert not met.is_pinned()
assert not met.values.is_pinned()
assert not met.offset.is_pinned()
met = met.pin_memory()
assert met.is_pinned()
assert met.values.is_pinned()
assert met.offset.is_pinned()
20 changes: 18 additions & 2 deletions test/data/test_multi_nested_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,7 @@ def test_fillna_col():


@withCUDA
def test_multi_nested_tensor_basics(device):
def test_basics(device):
num_rows = 8
num_cols = 10
max_value = 100
Expand Down Expand Up @@ -317,7 +317,7 @@ def test_multi_nested_tensor_basics(device):
cloned_multi_nested_tensor)


def test_multi_nested_tensor_different_num_rows():
def test_different_num_rows():
tensor_mat = [
[torch.tensor([1, 2, 3]),
torch.tensor([4, 5])],
Expand All @@ -331,3 +331,19 @@ def test_multi_nested_tensor_different_num_rows():
match="The length of each row must be the same",
):
MultiNestedTensor.from_tensor_mat(tensor_mat)


def test_pin_memory():
num_rows = 10
num_cols = 3
tensor = MultiNestedTensor.from_tensor_mat(
[[torch.randn(random.randint(0, 10)) for _ in range(num_cols)]
for _ in range(num_rows)])

assert not tensor.is_pinned()
assert not tensor.values.is_pinned()
assert not tensor.offset.is_pinned()
tensor = tensor.pin_memory()
assert tensor.is_pinned()
assert tensor.values.is_pinned()
assert tensor.offset.is_pinned()
15 changes: 15 additions & 0 deletions test/data/test_tensor_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,3 +230,18 @@ def test_custom_tf_get_col_feat():
assert torch.equal(feat, feat_dict['numerical'][:, 0:1])
feat = tf.get_col_feat('num_2')
assert torch.equal(feat, feat_dict['numerical'][:, 1:2])


def test_pin_memory(get_fake_tensor_frame):
def assert_is_pinned(tf: TensorFrame, expected: bool) -> bool:
for value in tf.feat_dict.values():
if isinstance(value, dict):
for v in value.values():
assert v.is_pinned() is expected
else:
assert value.is_pinned() is expected

tf = get_fake_tensor_frame(10)
assert_is_pinned(tf, expected=False)
tf = tf.pin_memory()
assert_is_pinned(tf, expected=True)
6 changes: 6 additions & 0 deletions torch_frame/data/multi_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,12 @@ def cpu(self, *args, **kwargs):
def cuda(self, *args, **kwargs):
return self._apply(lambda x: x.cuda(*args, **kwargs))

def pin_memory(self, *args, **kwargs):
return self._apply(lambda x: x.pin_memory(*args, **kwargs))

def is_pinned(self) -> bool:
return self.values.is_pinned()
akihironitta marked this conversation as resolved.
Show resolved Hide resolved

# Helper Functions ########################################################

def _apply(self, fn: Callable[[Tensor], Tensor]) -> _MultiTensor:
Expand Down
11 changes: 11 additions & 0 deletions torch_frame/data/tensor_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,6 +340,17 @@ def fn(x):

return self._apply(fn)

def pin_memory(self, *args, **kwargs):
def fn(x):
if isinstance(x, dict):
for key in x:
x[key] = x[key].pin_memory(*args, **kwargs)
else:
x = x.pin_memory(*args, **kwargs)
return x

return self._apply(fn)

# Helper Functions ########################################################

def _apply(self, fn: Callable[[TensorData], TensorData]) -> TensorFrame:
Expand Down
Loading