Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support pin_memory() in Multi{Embedding,Nested}Tensor and TensorFrame #437

Merged
merged 9 commits into from
Dec 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ The format is based on [Keep a Changelog](http://keepachangelog.com/en/1.0.0/).
- Added a benchmark script to compare PyTorch Frame with PyTorch Tabular ([#398](https://github.com/pyg-team/pytorch-frame/pull/398), [#444](https://github.com/pyg-team/pytorch-frame/pull/444))
- Added `is_floating_point` method to `MultiNestedTensor` and `MultiEmbeddingTensor` ([#445](https://github.com/pyg-team/pytorch-frame/pull/445))
- Added support for inferring `stype.categorical` from boolean columns in `utils.infer_series_stype` ([#421](https://github.com/pyg-team/pytorch-frame/pull/421))
- Added `pin_memory()` to `TensorFrame`, `MultiEmbeddingTensor`, and `MultiNestedTensor` ([#437](https://github.com/pyg-team/pytorch-frame/pull/437))

### Changed

Expand Down
17 changes: 16 additions & 1 deletion test/data/test_multi_embedding_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
import torch

from torch_frame.data.multi_embedding_tensor import MultiEmbeddingTensor
from torch_frame.testing import withCUDA
from torch_frame.testing import onlyCUDA, withCUDA


def assert_equal(
Expand Down Expand Up @@ -487,3 +487,18 @@ def test_cat(device):
# case: list of non-MultiEmbeddingTensor should raise error
with pytest.raises(AssertionError):
MultiEmbeddingTensor.cat([object()], dim=0)


@onlyCUDA
def test_pin_memory():
met, _ = get_fake_multi_embedding_tensor(
num_rows=2,
num_cols=3,
)
assert not met.is_pinned()
assert not met.values.is_pinned()
assert not met.offset.is_pinned()
met = met.pin_memory()
assert met.is_pinned()
assert met.values.is_pinned()
assert met.offset.is_pinned()
25 changes: 21 additions & 4 deletions test/data/test_multi_nested_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from torch import Tensor

from torch_frame.data import MultiNestedTensor
from torch_frame.testing import withCUDA
from torch_frame.testing import onlyCUDA


def assert_equal(tensor_mat: list[list[Tensor]],
Expand Down Expand Up @@ -95,8 +95,8 @@ def test_fillna_col():
torch.tensor([100], dtype=torch.float32)))


@withCUDA
def test_multi_nested_tensor_basics(device):
@onlyCUDA
def test_basics(device):
Comment on lines +98 to +99
Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

num_rows = 8
num_cols = 10
max_value = 100
Expand Down Expand Up @@ -326,7 +326,7 @@ def test_multi_nested_tensor_basics(device):
cloned_multi_nested_tensor)


def test_multi_nested_tensor_different_num_rows():
def test_different_num_rows():
tensor_mat = [
[torch.tensor([1, 2, 3]),
torch.tensor([4, 5])],
Expand All @@ -340,3 +340,20 @@ def test_multi_nested_tensor_different_num_rows():
match="The length of each row must be the same",
):
MultiNestedTensor.from_tensor_mat(tensor_mat)


@onlyCUDA
def test_pin_memory():
num_rows = 10
num_cols = 3
tensor = MultiNestedTensor.from_tensor_mat(
[[torch.randn(random.randint(0, 10)) for _ in range(num_cols)]
for _ in range(num_rows)])

assert not tensor.is_pinned()
assert not tensor.values.is_pinned()
assert not tensor.offset.is_pinned()
tensor = tensor.pin_memory()
assert tensor.is_pinned()
assert tensor.values.is_pinned()
assert tensor.offset.is_pinned()
17 changes: 17 additions & 0 deletions test/data/test_tensor_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from torch_frame import TensorFrame
from torch_frame.data.multi_embedding_tensor import MultiEmbeddingTensor
from torch_frame.data.multi_nested_tensor import MultiNestedTensor
from torch_frame.testing import onlyCUDA


def test_tensor_frame_basics(get_fake_tensor_frame):
Expand Down Expand Up @@ -253,3 +254,19 @@ def test_non_list_col_names_dict():
col_names_dict = {torch_frame.categorical: 'cat_1'}
with pytest.raises(ValueError, match='must be a list of column names'):
TensorFrame(feat_dict, col_names_dict)


@onlyCUDA
def test_pin_memory(get_fake_tensor_frame):
def assert_is_pinned(tf: TensorFrame, expected: bool) -> bool:
for value in tf.feat_dict.values():
if isinstance(value, dict):
for v in value.values():
assert v.is_pinned() is expected
else:
assert value.is_pinned() is expected

tf = get_fake_tensor_frame(10)
assert_is_pinned(tf, expected=False)
tf = tf.pin_memory()
assert_is_pinned(tf, expected=True)
6 changes: 6 additions & 0 deletions torch_frame/data/multi_tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,12 @@ def cpu(self, *args, **kwargs):
def cuda(self, *args, **kwargs):
return self._apply(lambda x: x.cuda(*args, **kwargs))

def pin_memory(self, *args, **kwargs):
return self._apply(lambda x: x.pin_memory(*args, **kwargs))

def is_pinned(self) -> bool:
return self.values.is_pinned() and self.offset.is_pinned()

# Helper Functions ########################################################

def _apply(self, fn: Callable[[Tensor], Tensor]) -> _MultiTensor:
Expand Down
11 changes: 11 additions & 0 deletions torch_frame/data/tensor_frame.py
Original file line number Diff line number Diff line change
Expand Up @@ -356,6 +356,17 @@ def fn(x):

return self._apply(fn)

def pin_memory(self, *args, **kwargs):
def fn(x):
if isinstance(x, dict):
for key in x:
x[key] = x[key].pin_memory(*args, **kwargs)
else:
x = x.pin_memory(*args, **kwargs)
return x

return self._apply(fn)

# Helper Functions ########################################################

def _apply(self, fn: Callable[[TensorData], TensorData]) -> TensorFrame:
Expand Down
2 changes: 2 additions & 0 deletions torch_frame/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,12 @@
has_package,
withPackage,
withCUDA,
onlyCUDA,
)

__all__ = [
'has_package',
'withPackage',
'withCUDA',
'onlyCUDA',
]
9 changes: 9 additions & 0 deletions torch_frame/testing/decorators.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,3 +48,12 @@ def withCUDA(func: Callable):
devices.append(pytest.param(torch.device('cuda:0'), id='cuda:0'))

return pytest.mark.parametrize('device', devices)(func)


def onlyCUDA(func: Callable) -> Callable:
r"""A decorator to skip tests if CUDA is not found."""
import pytest
return pytest.mark.skipif(
not torch.cuda.is_available(),
reason="CUDA not available",
)(func)
Loading