The official implementation of our paper DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis.
This code is mainly built on U-ViT and Mamba.
Installing Mamba may cost a lot of effort. If you encounter problems, this issues in Mamba may be very helpful.
# create env:
conda env create -f environment.yaml
# if you want to update the env `mamba` with the contents in `~/mamba_attn/environment.yaml`:
conda env update --name mamba --file ~/mamba_attn/environment.yaml --prune
# Switch to the correct environment
conda activate mamba-attn
conda install chardet
# Compiling Mamba. This step may take a lot of time, please be patient.
# You need to successfully install causal-conv1d first.
CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install --user -e .
# If failing to compile, you can copy the files in './build/' from another server which has compiled successfully; Maybe --user is necessary.
# Optional: if you have only 8 A100 to train Huge model with a batch size of 768, I recommand to install deepspeed to reduce the required GPU memory:
pip install deepspeed
Frequently Asked Questions:
-
If you encounter errors like
ModuleNotFoundError: No module named 'selective_scan_cuda'
:Answer: you need to correctly install and compile Mamba:
pip install causal-conv1d==1.2.0.post2 # The version maybe different depending on your cuda version CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install --user -e .
-
failed Compilation:
-
The detected CUDA version mismatches the version that was used to compile PyTorch. Please make sure to use the same CUDA versions:
Answer: you need to reinstall Pytorch with the correct version:
# For example, on cuda 11.8: conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=11.8 -c pytorch -c nvidia # Then, compiling the mamba in our project again: CAUSAL_CONV1D_FORCE_BUILD=TRUE pip install --user -e .
-
Please follow U-ViT, the same subtitle.
Model | FID | training iterations | batch size |
---|---|---|---|
ImageNet 256x256 (Huge/2) | 2.40 | 425K | 768 |
ImageNet 256x256 (Huge/2) | 2.21 | 625K | 768 |
ImageNet 512x512 (fine-tuned Huge/2) | 3.94 | Fine-tune | 240 |
About the checkpoint files:
-
We use
nnet_ema.pth
for evaluation instead ofnnet.pth
. -
nnet.pth
is the trained model, whilennet_ema.pth
is the EMA of model weights.
Use eval_ldm_discrete.py
for evaluation and generating images with CFG
# ImageNet 256x256 Huge, 425K
# If your model checkpoint path is not 'workdir/imagenet256_H_DiM/default/ckpts/425000.ckpt/nnet_ema.pth', you can change the path after '--nnet_path='
accelerate launch --multi_gpu --gpu_ids 0,1,2,3,4,5,6,7 --main_process_port 20039 --num_processes 8 --mixed_precision bf16 ./eval_ldm_discrete.py --config=configs/imagenet256_H_DiM.py --nnet_path='workdir/imagenet256_H_DiM/default/ckpts/425000.ckpt/nnet_ema.pth'
# ImageNet 512x512 Huge
# The generated 512x512 images for evaluation cost ~22G.
# So I recommend setting a path to `config.sample.path` in the config `imagenet512_H_DiM_ft` if the space is tight for temporary files.
accelerate launch --multi_gpu --gpu_ids 0,1,2,3,4,5,6,7 --main_process_port 20039 --num_processes 8 --mixed_precision bf16 ./eval_ldm_discrete.py --config=configs/imagenet512_H_DiM_ft.py --nnet_path='workdir/imagenet512_H_DiM_ft/default/ckpts/64000.ckpt/nnet_ema.pth'
# ImageNet 512x512 Huge, upsample 2x, the generated images are in `workdir/imagenet512_H_DiM_ft/test_tmp` which is set in config.
accelerate launch --multi_gpu --gpu_ids 0,1,2,3,4,5,6,7 --main_process_port 20039 --num_processes 8 --mixed_precision bf16 ./eval_ldm_discrete.py --config=configs/imagenet512_H_DiM_upsample_test.py --nnet_path='workdir/imagenet512_H_DiM_ft/default/ckpts/64000.ckpt/nnet_ema.pth'
# ImageNet 512x512 Huge, upsample 3x, the generated images are in `workdir/imagenet512_H_DiM_ft/test_tmp` which is set in config.
accelerate launch --multi_gpu --gpu_ids 0,1,2,3,4,5,6,7 --main_process_port 20039 --num_processes 8 --mixed_precision bf16 ./eval_ldm_discrete.py --config=configs/imagenet512_H_DiM_upsample_3x_test.py --nnet_path='workdir/imagenet512_H_DiM_ft/default/ckpts/64000.ckpt/nnet_ema.pth'
# Cifar 32x32 Small
accelerate launch --multi_gpu --num_processes 8 --mixed_precision fp16 ./train.py --config=configs/cifar10_S_DiM.py
# ImageNet 256x256 Large
accelerate launch --multi_gpu --num_processes 8 --mixed_precision bf16 ./train_ldm_discrete.py --config=configs/imagenet256_L_DiM.py
# ImageNet 256x256 Huge (Deepspeed Zero-2 for memory-efficient training)
accelerate launch --multi_gpu --num_processes 8 --mixed_precision bf16 ./train_ldm_discrete.py --config=configs/imagenet256_H_DiM.py
# ImageNet 512x512 Huge (Deepspeed Zero-2 for memory-efficient training)
# Fine-tuning, and you need to carefully check whether
# the pre-trained weights are in `workdir/imagenet256_H_DiM/default/ckpts/425000.ckpt/nnet_ema.pth`.
# This location is set in the config file: `config.nnet.pretrained_path`.
# If there is no such ckpt, no pre-training weight will be loaded.
accelerate launch --multi_gpu --num_processes 8 --mixed_precision bf16 ./train_ldm_discrete.py --config=configs/imagenet512_H_DiM_ft.py
@misc{teng2024dim,
title={DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis},
author={Yao Teng and Yue Wu and Han Shi and Xuefei Ning and Guohao Dai and Yu Wang and Zhenguo Li and Xihui Liu},
year={2024},
eprint={2405.14224},
archivePrefix={arXiv},
primaryClass={cs.CV}
}