-
Notifications
You must be signed in to change notification settings - Fork 9
/
eval_t2i_discrete.py
151 lines (121 loc) · 5.48 KB
/
eval_t2i_discrete.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from tools.fid_score import calculate_fid_given_paths
import ml_collections
import torch
from torch import multiprocessing as mp
import accelerate
from torch.utils.data import DataLoader
import utils
from datasets import get_dataset
import tempfile
from dpm_solver_pp import NoiseScheduleVP, DPM_Solver
from absl import logging
import builtins
import einops
import libs.autoencoder
def stable_diffusion_beta_schedule(linear_start=0.00085, linear_end=0.0120, n_timestep=1000):
_betas = (
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
)
return _betas.numpy()
def evaluate(config):
if config.get('benchmark', False):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
mp.set_start_method('spawn')
accelerator = accelerate.Accelerator()
device = accelerator.device
accelerate.utils.set_seed(config.seed, device_specific=True)
logging.info(f'Process {accelerator.process_index} using device: {device}')
config.mixed_precision = accelerator.mixed_precision
config = ml_collections.FrozenConfigDict(config)
if accelerator.is_main_process:
utils.set_logger(log_level='info', fname=config.output_path)
else:
utils.set_logger(log_level='error')
builtins.print = lambda *args: None
dataset = get_dataset(**config.dataset)
test_dataset = dataset.get_split(split='test', labeled=True) # for sampling
test_dataset_loader = DataLoader(test_dataset, batch_size=config.sample.mini_batch_size, shuffle=True,
drop_last=True, num_workers=8, pin_memory=True, persistent_workers=True)
nnet = utils.get_nnet(**config.nnet)
nnet, test_dataset_loader = accelerator.prepare(nnet, test_dataset_loader)
logging.info(f'load nnet from {config.nnet_path}')
accelerator.unwrap_model(nnet).load_state_dict(torch.load(config.nnet_path, map_location='cpu'))
nnet.eval()
def cfg_nnet(x, timesteps, context):
_cond = nnet(x, timesteps, context=context)
if config.sample.scale == 0:
return _cond
_empty_context = torch.tensor(dataset.empty_context, device=device)
_empty_context = einops.repeat(_empty_context, 'L D -> B L D', B=x.size(0))
_uncond = nnet(x, timesteps, context=_empty_context)
return _cond + config.sample.scale * (_cond - _uncond)
autoencoder = libs.autoencoder.get_model(**config.autoencoder)
autoencoder.to(device)
@torch.cuda.amp.autocast()
def encode(_batch):
return autoencoder.encode(_batch)
@torch.cuda.amp.autocast()
def decode(_batch):
return autoencoder.decode(_batch)
def decode_large_batch(_batch):
decode_mini_batch_size = 50 # use a small batch size since the decoder is large
xs = []
pt = 0
for _decode_mini_batch_size in utils.amortize(_batch.size(0), decode_mini_batch_size):
x = decode(_batch[pt: pt + _decode_mini_batch_size])
pt += _decode_mini_batch_size
xs.append(x)
xs = torch.concat(xs, dim=0)
assert xs.size(0) == _batch.size(0)
return xs
def get_context_generator():
while True:
for data in test_dataset_loader:
_, _context = data
yield _context
context_generator = get_context_generator()
_betas = stable_diffusion_beta_schedule()
N = len(_betas)
logging.info(config.sample)
assert os.path.exists(dataset.fid_stat)
logging.info(f'sample: n_samples={config.sample.n_samples}, mode=t2i, mixed_precision={config.mixed_precision}')
def dpm_solver_sample(_n_samples, _sample_steps, **kwargs):
_z_init = torch.randn(_n_samples, *config.z_shape, device=device)
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=torch.tensor(_betas, device=device).float())
def model_fn(x, t_continuous):
t = t_continuous * N
return cfg_nnet(x, t, **kwargs)
dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True, thresholding=False)
_z = dpm_solver.sample(_z_init, steps=_sample_steps, eps=1. / N, T=1.)
return decode_large_batch(_z)
def sample_fn(_n_samples):
_context = next(context_generator)
assert _context.size(0) == _n_samples
return dpm_solver_sample(_n_samples, config.sample.sample_steps, context=_context)
with tempfile.TemporaryDirectory() as temp_path:
path = config.sample.path or temp_path
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
logging.info(f'Samples are saved in {path}')
utils.sample2dir(accelerator, path, config.sample.n_samples, config.sample.mini_batch_size, sample_fn, dataset.unpreprocess)
if accelerator.is_main_process:
fid = calculate_fid_given_paths((dataset.fid_stat, path))
logging.info(f'nnet_path={config.nnet_path}, fid={fid}')
from absl import flags
from absl import app
from ml_collections import config_flags
import os
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file(
"config", None, "Training configuration.", lock_config=False)
flags.mark_flags_as_required(["config"])
flags.DEFINE_string("nnet_path", None, "The nnet to evaluate.")
flags.DEFINE_string("output_path", None, "The path to output log.")
def main(argv):
config = FLAGS.config
config.nnet_path = FLAGS.nnet_path
config.output_path = FLAGS.output_path
evaluate(config)
if __name__ == "__main__":
app.run(main)