-
Notifications
You must be signed in to change notification settings - Fork 0
/
mips.v.bak
327 lines (316 loc) · 10.9 KB
/
mips.v.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
module data_memory
(
input clk,
// address input, shared by read and write port
input [15:0] mem_access_addr,
// write port
input [15:0] mem_write_data,
input mem_write_en,
input mem_read,
// read port
output [15:0] mem_read_data
);
integer i;
reg [15:0] ram [255:0];
wire [7 : 0] ram_addr = mem_access_addr[8 : 1];
initial begin
for(i=0;i<256;i=i+1)
ram[i] <= 16'd0;
end
always @(posedge clk) begin
if (mem_write_en)
ram[ram_addr] <= mem_write_data;
end
assign mem_read_data = (mem_read==1'b1) ? ram[ram_addr]: 16'd0;
endmodule
module ALUControl( ALU_Control, ALUOp, Function);
output reg[2:0] ALU_Control;
input [1:0] ALUOp;
input [3:0] Function;
wire [5:0] ALUControlIn;
assign ALUControlIn = {ALUOp,Function};
always @(ALUControlIn)
casex (ALUControlIn)
6'b11xxxx: ALU_Control=3'b000;
6'b10xxxx: ALU_Control=3'b100;
6'b01xxxx: ALU_Control=3'b001;
6'b000000: ALU_Control=3'b000;
6'b000001: ALU_Control=3'b001;
6'b000010: ALU_Control=3'b010;
6'b000011: ALU_Control=3'b011;
6'b000100: ALU_Control=3'b100;
default: ALU_Control=3'b000;
endcase
endmodule
// Verilog code for JR control unit
module JR_Control( input[1:0] alu_op,
input [3:0] funct,
output JRControl
);
assign JRControl = ({alu_op,funct}==6'b001000) ? 1'b1 : 1'b0;
endmodule
module control( input[2:0] opcode,
input reset,
output reg[1:0] reg_dst,mem_to_reg,alu_op,
output reg jump,branch,mem_read,mem_write,alu_src,reg_write,sign_or_zero
);
always @(*)
begin
if(reset == 1'b1) begin
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b00;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b0;
sign_or_zero = 1'b1;
end
else begin
case(opcode)
3'b000: begin // add
reg_dst = 2'b01;
mem_to_reg = 2'b00;
alu_op = 2'b00;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b1;
sign_or_zero = 1'b1;
end
3'b001: begin // sli
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b10;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b1;
reg_write = 1'b1;
sign_or_zero = 1'b0;
end
3'b010: begin // j
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b00;
jump = 1'b1;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b0;
sign_or_zero = 1'b1;
end
3'b011: begin // jal
reg_dst = 2'b10;
mem_to_reg = 2'b10;
alu_op = 2'b00;
jump = 1'b1;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b1;
sign_or_zero = 1'b1;
end
3'b100: begin // lw
reg_dst = 2'b00;
mem_to_reg = 2'b01;
alu_op = 2'b11;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b1;
mem_write = 1'b0;
alu_src = 1'b1;
reg_write = 1'b1;
sign_or_zero = 1'b1;
end
3'b101: begin // sw
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b11;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b1;
alu_src = 1'b1;
reg_write = 1'b0;
sign_or_zero = 1'b1;
end
3'b110: begin // beq
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b01;
jump = 1'b0;
branch = 1'b1;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b0;
sign_or_zero = 1'b1;
end
3'b111: begin // addi
reg_dst = 2'b00;
mem_to_reg = 2'b00;
alu_op = 2'b11;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b1;
reg_write = 1'b1;
sign_or_zero = 1'b1;
end
default: begin
reg_dst = 2'b01;
mem_to_reg = 2'b00;
alu_op = 2'b00;
jump = 1'b0;
branch = 1'b0;
mem_read = 1'b0;
mem_write = 1'b0;
alu_src = 1'b0;
reg_write = 1'b1;
sign_or_zero = 1'b1;
end
endcase
end
end
endmodule
module mips_16( input clk,reset,
output[15:0] pc_out, alu_result
//,reg3,reg4
);
reg[15:0] pc_current;
wire signed[15:0] pc_next,pc2;
wire [15:0] instr;
wire[1:0] reg_dst,mem_to_reg,alu_op;
wire jump,branch,mem_read,mem_write,alu_src,reg_write ;
wire [2:0] reg_write_dest;
wire [15:0] reg_write_data;
wire [2:0] reg_read_addr_1;
wire [15:0] reg_read_data_1;
wire [2:0] reg_read_addr_2;
wire [15:0] reg_read_data_2;
wire [15:0] sign_ext_im,read_data2,zero_ext_im,imm_ext;
wire JRControl;
wire [2:0] ALU_Control;
wire [15:0] ALU_out;
wire zero_flag;
wire signed[15:0] im_shift_1, PC_j, PC_beq, PC_4beq,PC_4beqj,PC_jr;
wire beq_control;
wire [14:0] jump_shift_1;
wire [15:0]mem_read_data;
wire [15:0] no_sign_ext;
wire sign_or_zero;
// PC
always @(posedge clk or posedge reset)
begin
if(reset)
pc_current <= 16'd0;
else
pc_current <= pc_next;
end
// PC + 2
assign pc2 = pc_current + 16'd2;
// instruction memory
instr_mem instrucion_memory(.pc(pc_current),.instruction(instr));
// jump shift left 1
assign jump_shift_1 = {instr[13:0],1'b0};
// control unit
control control_unit(.reset(reset),.opcode(instr[15:13]),.reg_dst(reg_dst)
,.mem_to_reg(mem_to_reg),.alu_op(alu_op),.jump(jump),.branch(branch),.mem_read(mem_read),
.mem_write(mem_write),.alu_src(alu_src),.reg_write(reg_write),.sign_or_zero(sign_or_zero));
// multiplexer regdest
assign reg_write_dest = (reg_dst==2'b10) ? 3'b111: ((reg_dst==2'b01) ? instr[6:4] :instr[9:7]);
// register file
assign reg_read_addr_1 = instr[12:10];
assign reg_read_addr_2 = instr[9:7];
register_file reg_file(.clk(clk),.rst(reset),.reg_write_en(reg_write),
.reg_write_dest(reg_write_dest),
.reg_write_data(reg_write_data),
.reg_read_addr_1(reg_read_addr_1),
.reg_read_data_1(reg_read_data_1),
.reg_read_addr_2(reg_read_addr_2),
.reg_read_data_2(reg_read_data_2));
//.reg3(reg3),
//.reg4(reg4));
// sign extend
assign sign_ext_im = {{9{instr[6]}},instr[6:0]};
assign zero_ext_im = {{9{1'b0}},instr[6:0]};
assign imm_ext = (sign_or_zero==1'b1) ? sign_ext_im : zero_ext_im;
// JR control
JR_Control JRControl_unit(.alu_op(alu_op),.funct(instr[3:0]),.JRControl(JRControl));
// ALU control unit
ALUControl ALU_Control_unit(.ALUOp(alu_op),.Function(instr[3:0]),.ALU_Control(ALU_Control));
// multiplexer alu_src
assign read_data2 = (alu_src==1'b1) ? imm_ext : reg_read_data_2;
// ALU
alu alu_unit(.a(reg_read_data_1),.b(read_data2),.alu_control(ALU_Control),.result(ALU_out),.zero(zero_flag));
// immediate shift 1
assign im_shift_1 = {imm_ext[14:0],1'b0};
//
assign no_sign_ext = ~(im_shift_1) + 1'b1;
// PC beq add
assign PC_beq = (im_shift_1[15] == 1'b1) ? (pc2 - no_sign_ext): (pc2 +im_shift_1);
// beq control
assign beq_control = branch & zero_flag;
// PC_beq
assign PC_4beq = (beq_control==1'b1) ? PC_beq : pc2;
// PC_j
assign PC_j = {pc2[15],jump_shift_1};
// PC_4beqj
assign PC_4beqj = (jump == 1'b1) ? PC_j : PC_4beq;
// PC_jr
assign PC_jr = reg_read_data_1;
// PC_next
assign pc_next = (JRControl==1'b1) ? PC_jr : PC_4beqj;
// data memory
data_memory datamem(.clk(clk),.mem_access_addr(ALU_out),
.mem_write_data(reg_read_data_2),.mem_write_en(mem_write),.mem_read(mem_read),
.mem_read_data(mem_read_data));
// write back
assign reg_write_data = (mem_to_reg == 2'b10) ? pc2:((mem_to_reg == 2'b01)? mem_read_data: ALU_out);
// output
assign pc_out = pc_current;
assign alu_result = ALU_out;
endmodule
`timescale 1ns / 1ps
//fpga4student.com: FPGA projects, Verilog projects, VHDL projects
// Verilog project: Verilog code for 16-bit MIPS Processor
// Testbench Verilog code for 16 bit single cycle MIPS CPU
module tb_mips16;
// Inputs
reg clk;
reg reset;
// Outputs
wire [15:0] pc_out;
wire [15:0] alu_result;//,reg3,reg4;
// Instantiate the Unit Under Test (UUT)
mips_16 uut (
.clk(clk),
.reset(reset),
.pc_out(pc_out),
.alu_result(alu_result)
//.reg3(reg3),
// .reg4(reg4)
);
initial begin
clk = 0;
forever #10 clk = ~clk;
end
initial begin
// Initialize Inputs
//$monitor ("register 3=%d, register 4=%d", reg3,reg4);
reset = 1;
// Wait 100 ns for global reset to finish
#100;
reset = 0;
// Add stimulus here
end
endmodule