-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add script to identify the displacement of the frames during rotation
- Loading branch information
1 parent
66d9a05
commit f7c6333
Showing
1 changed file
with
111 additions
and
0 deletions.
There are no files selected for viewing
111 changes: 111 additions & 0 deletions
111
derotation/scripts/extract_distortion_info_from_incremental_rotations.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
from pathlib import Path | ||
|
||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
import pandas as pd | ||
import tifffile | ||
from skimage.registration import phase_cross_correlation | ||
|
||
tif_path = Path( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/derotated/derotated_masked_full_incremental.tif" | ||
) | ||
tif = tifffile.imread(tif_path) | ||
|
||
csv_path = Path( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/derotated/derotated_masked_full_incremental.csv" | ||
) | ||
df = pd.read_csv(csv_path, index_col=0, header=0) | ||
# aproximate angles with 0 decimals | ||
df["rotation_angle"] = df["rotation_angle"] - 0.01 | ||
df["rotation_angle"] = df["rotation_angle"].round(2) | ||
|
||
# for rotation degrees 10, 20, 30... make mean images | ||
mean_images = [] | ||
|
||
for i in range(0, 360, 10): | ||
df_idx_angle = df[df["rotation_angle"] == i] | ||
images = tif[df_idx_angle.index] | ||
|
||
mean_image = np.mean(images, axis=0) | ||
|
||
mean_images.append(mean_image) | ||
|
||
# drop the first | ||
mean_images = mean_images[1:] | ||
|
||
image = np.mean(tif[:100], axis=0) | ||
|
||
peaks = [] | ||
for i, offset_image in enumerate(mean_images): | ||
shift, error, diffphase = phase_cross_correlation(image, offset_image) | ||
|
||
fig = plt.figure(figsize=(8, 3)) | ||
ax1 = plt.subplot(1, 3, 1) | ||
ax2 = plt.subplot(1, 3, 2, sharex=ax1, sharey=ax1) | ||
ax3 = plt.subplot(1, 3, 3) | ||
|
||
ax1.imshow(image, cmap="gray") | ||
ax1.set_axis_off() | ||
ax1.set_title("Reference image") | ||
|
||
ax2.imshow(offset_image.real, cmap="gray") | ||
ax2.set_axis_off() | ||
ax2.set_title("Offset image") | ||
|
||
# Show the output of a cross-correlation to show what the algorithm is | ||
# doing behind the scenes | ||
image_product = np.fft.fft2(image) * np.fft.fft2(offset_image).conj() | ||
cc_image = np.fft.fftshift(np.fft.ifft2(image_product)) | ||
|
||
peaks.append(np.unravel_index(np.argmax(cc_image), cc_image.shape)) | ||
|
||
ax3.imshow(cc_image.real) | ||
ax3.set_axis_off() | ||
ax3.set_title("Cross-correlation") | ||
|
||
# save plot | ||
fig.savefig( | ||
f"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/phase_cross_corr/pixel_precision_{i}.png" | ||
) | ||
|
||
|
||
df = pd.DataFrame(peaks, columns=["x", "y"]) | ||
df["rotation_angle"] = np.arange(10, 360, 10) | ||
df.to_csv( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/phase_cross_corr/pixel_precision.csv" | ||
) | ||
|
||
# plot the shift values | ||
fig, ax = plt.subplots() | ||
ax.plot(df["rotation_angle"], df["x"], label="x") | ||
ax.plot(df["rotation_angle"], df["y"], label="y") | ||
ax.set_xlabel("rotation angle") | ||
ax.set_ylabel("shift value") | ||
ax.legend() | ||
|
||
ax.spines["right"].set_visible(False) | ||
ax.spines["top"].set_visible(False) | ||
|
||
fig.savefig( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/phase_cross_corr/pixel_precision_shift_values.png" | ||
) | ||
|
||
image_center = np.array(image.shape) / 2 | ||
shifts = df[["x", "y"]] | ||
shifts = shifts - image_center | ||
shifts = shifts.astype(int) | ||
|
||
# now use the shift values to correct the position of the images | ||
registered_images = [] | ||
for i, image in enumerate(mean_images): | ||
# shift = df.iloc[i][["x", "y"]] | ||
# shift = shift - image_center | ||
# shift = shift.astype(int) | ||
registered_image = np.roll(image, shift=shifts.iloc[i], axis=(0, 1)) | ||
registered_images.append(registered_image) | ||
|
||
registered_images = np.array(registered_images) | ||
tifffile.imwrite( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/incremental/derotated/derotated_masked_full_incremental_registered_small.tif", | ||
registered_images, | ||
) |