-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
200f1c5
commit e066ee6
Showing
1 changed file
with
179 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
from pathlib import Path | ||
|
||
import fastplotlib as fpl | ||
import numpy as np | ||
import pandas as pd | ||
from ipywidgets import AppLayout | ||
|
||
from derotation.postprocessing.load_processed_data import ( | ||
get_dff, | ||
get_plane_segmentation, | ||
load_registered_binary, | ||
load_suite2p_data, | ||
) | ||
|
||
# warnings.filterwarnings("ignore", category=DeprecationWarning) | ||
|
||
# ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ | ||
# Load data | ||
|
||
path_to_nwb = Path( | ||
"/Users/lauraporta/Source/local/NWB_conversions/data/suite2p.nwb" | ||
) | ||
|
||
suite2p_data = load_suite2p_data(path_to_nwb) | ||
|
||
dff, timebase = get_dff(suite2p_data) | ||
|
||
ROI_centroids, is_cell, labels, contours = get_plane_segmentation(suite2p_data) | ||
|
||
|
||
# Load csv file containing rotation information | ||
rotation_info = pd.read_csv("rotation_info.csv") | ||
|
||
|
||
# import the registered binary as it is not included in the NWB file | ||
path_to_bin_file = Path( | ||
"/Users/laura/data/derotation/raw/230802_CAA_1120182/derotated/archive/test/suite2p/plane0/data.bin" | ||
) | ||
|
||
registered = load_registered_binary(path_to_bin_file, (512, 512, len(dff))) | ||
|
||
# ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ ⚁⚀ ⚯ | ||
# Starting point of the dashboard | ||
|
||
|
||
def find_ROI(nearest): | ||
x, y, _ = np.asarray(nearest.data.value).mean(axis=0) | ||
# print(f'x:{x}, y:{y}') | ||
closest_x = np.abs(ROI_centroids[:, 0] - x).argmin() | ||
closest_y = np.abs(ROI_centroids[:, 1] - y).argmin() | ||
# print(f'closest x: {closest_x}, closest_y: {closest_y}') | ||
if closest_x != closest_y: | ||
delta_x = ROI_centroids[closest_x, 0] - x | ||
delta_y = ROI_centroids[closest_y, 1] - y | ||
if delta_x < delta_y: | ||
return closest_x | ||
else: | ||
return closest_y | ||
else: | ||
return closest_x | ||
|
||
|
||
# Panel 1 | ||
colors = {key: "white" for key in range(len(rotation_info["rotation_angle"]))} | ||
for i, row in rotation_info.iterrows(): | ||
if row["direction"] == -1: | ||
colors[i] = "green" | ||
if row["direction"] == 1: | ||
colors[i] = "magenta" | ||
|
||
rotation_fig = fpl.Figure((3, 1), size=(1200, 300)) | ||
angles_top_plot = rotation_fig[0, 0].add_line( | ||
data=rotation_info["rotation_angle"], | ||
thickness=1, | ||
colors=list(colors.values()), | ||
) | ||
|
||
region_selector = angles_top_plot.add_linear_region_selector() | ||
zoomed_init = region_selector.get_selected_data() | ||
zoomed_x = rotation_fig[1, 0].add_line(zoomed_init) | ||
|
||
selector = angles_top_plot.add_linear_selector() | ||
|
||
selection_boundaries = region_selector.get_selected_indices() | ||
sliced_dff = dff[selection_boundaries[0] : selection_boundaries[-1]] | ||
|
||
dff_lines = rotation_fig[2, 0].add_line_stack( | ||
np.asarray(sliced_dff).T[is_cell], | ||
cmap="jet", | ||
thickness=1, | ||
separation=1, | ||
) | ||
|
||
|
||
@region_selector.add_event_handler("selection") | ||
def slice_dff_array(ev): | ||
global zoomed_x | ||
selected_data = ev.get_selected_data() | ||
rotation_fig[1, 0].remove_graphic(zoomed_x) | ||
zoomed_x = rotation_fig[1, 0].add_line(selected_data) | ||
rotation_fig[1, 0].auto_scale() | ||
|
||
global dff_lines | ||
global sliced_dff | ||
selection_boundaries = ev.get_selected_indices() | ||
sliced_dff = dff[selection_boundaries[0] : selection_boundaries[-1]] | ||
|
||
rotation_fig[2, 0].clear() | ||
dff_lines = rotation_fig[2, 0].add_line_stack( | ||
np.asarray(sliced_dff).T[is_cell], | ||
cmap="jet", | ||
thickness=1, | ||
separation=1, | ||
) | ||
rotation_fig[2, 0].auto_scale() | ||
|
||
fig_single_trace[0, 0].clear() | ||
fig_single_trace[0, 0].add_line( | ||
data=np.asarray(sliced_dff).T[idx], | ||
thickness=2, | ||
cmap="plasma", | ||
) | ||
fig_single_trace[0, 0].auto_scale() | ||
|
||
|
||
# Panel 2 | ||
iw = fpl.ImageWidget( | ||
registered[: len(rotation_info["rotation_angle"])], cmap="gnuplot2" | ||
) | ||
iw.show() | ||
contours_graphic = iw.figure[0, 0].add_line_collection( | ||
contours, thickness=2, colors="green" | ||
) | ||
|
||
# Panel 3 | ||
fig_single_trace = fpl.Figure() | ||
idx = 0 | ||
single_line = fig_single_trace[0, 0].add_line( | ||
data=np.asarray(sliced_dff).T[idx], | ||
thickness=2, | ||
cmap="plasma", | ||
) | ||
|
||
rotation_fig.show(maintain_aspect=False) | ||
|
||
|
||
def set_selected_component(ev): | ||
xy = iw.figure[0, 0].map_screen_to_world(ev)[:-1] | ||
global nearest | ||
nearest = fpl.utils.get_nearest_graphics(xy, contours_graphic)[0] | ||
contours_graphic.colors = "green" | ||
nearest.colors = "w" | ||
|
||
global idx | ||
global single_line | ||
idx = find_ROI(nearest) | ||
fig_single_trace[0, 0].clear() | ||
single_line = fig_single_trace[0, 0].add_line( | ||
data=np.asarray(sliced_dff).T[idx], | ||
thickness=2, | ||
cmap="plasma", | ||
) | ||
fig_single_trace[0, 0].auto_scale() | ||
|
||
|
||
iw.figure.renderer.add_event_handler(set_selected_component, "click") | ||
selector.add_ipywidget_handler(iw.sliders["t"], step=1) | ||
|
||
|
||
def dashboard(): | ||
AppLayout( | ||
header=rotation_fig.show(maintain_aspect=False), | ||
left_sidebar=iw.show(), | ||
right_sidebar=fig_single_trace.show(maintain_aspect=False), | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
dashboard() |