Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make test folder for src structure and refactored verify_version tests #23

Merged
merged 1 commit into from
May 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions tests/retrievers/test_base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from neo4j_genai.retrievers.base import Retriever


@pytest.mark.parametrize(
"db_version,expected_exception",
[
(["5.18-aura"], None),
(["5.3-aura"], ValueError),
(["5.19.0"], None),
(["4.3.5"], ValueError),
],
)
def test_retriever_version_support(driver, db_version, expected_exception):
class MockRetriever(Retriever):
def search(self, *args, **kwargs):
pass

driver.execute_query.return_value = [[{"versions": db_version}], None, None]
if expected_exception:
with pytest.raises(expected_exception):
MockRetriever(driver=driver)
else:
MockRetriever(driver=driver)
231 changes: 231 additions & 0 deletions tests/retrievers/test_hybrid.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from unittest.mock import patch, MagicMock

import pytest

from neo4j_genai import HybridRetriever, HybridCypherRetriever
from neo4j_genai.neo4j_queries import get_search_query
from neo4j_genai.types import SearchType


def test_vector_retriever_initialization(driver):
with patch("neo4j_genai.retrievers.base.Retriever._verify_version") as mock_verify:
HybridRetriever(
driver=driver,
vector_index_name="my-index",
fulltext_index_name="fulltext-index",
)
mock_verify.assert_called_once()


def test_vector_cypher_retriever_initialization(driver):
with patch("neo4j_genai.retrievers.base.Retriever._verify_version") as mock_verify:
HybridCypherRetriever(
driver=driver,
vector_index_name="my-index",
fulltext_index_name="fulltext-index",
retrieval_query="",
)
mock_verify.assert_called_once()


@patch("neo4j_genai.HybridRetriever._verify_version")
def test_hybrid_search_text_happy_path(_verify_version_mock, driver):
embed_query_vector = [1.0 for _ in range(1536)]
custom_embeddings = MagicMock()
custom_embeddings.embed_query.return_value = embed_query_vector
vector_index_name = "my-index"
fulltext_index_name = "my-fulltext-index"
query_text = "may thy knife chip and shatter"
top_k = 5
retriever = HybridRetriever(
driver, vector_index_name, fulltext_index_name, custom_embeddings
)
retriever.driver.execute_query.return_value = [
[{"node": "dummy-node", "score": 1.0}],
None,
None,
]
search_query = get_search_query(SearchType.HYBRID)

records = retriever.search(query_text=query_text, top_k=top_k)

retriever.driver.execute_query.assert_called_once_with(
search_query,
{
"vector_index_name": vector_index_name,
"top_k": top_k,
"query_text": query_text,
"fulltext_index_name": fulltext_index_name,
"query_vector": embed_query_vector,
},
)
custom_embeddings.embed_query.assert_called_once_with(query_text)
assert records == [{"node": "dummy-node", "score": 1.0}]


@patch("neo4j_genai.HybridRetriever._verify_version")
def test_hybrid_search_favors_query_vector_over_embedding_vector(
_verify_version_mock, driver
):
embed_query_vector = [1.0 for _ in range(1536)]
query_vector = [2.0 for _ in range(1536)]
custom_embeddings = MagicMock()
custom_embeddings.embed_query.return_value = embed_query_vector
vector_index_name = "my-index"
fulltext_index_name = "my-fulltext-index"
query_text = "may thy knife chip and shatter"
top_k = 5
retriever = HybridRetriever(
driver, vector_index_name, fulltext_index_name, custom_embeddings
)
retriever.driver.execute_query.return_value = [
[{"node": "dummy-node", "score": 1.0}],
None,
None,
]
search_query = get_search_query(SearchType.HYBRID)

retriever.search(query_text=query_text, query_vector=query_vector, top_k=top_k)

retriever.driver.execute_query.assert_called_once_with(
search_query,
{
"vector_index_name": vector_index_name,
"top_k": top_k,
"query_text": query_text,
"fulltext_index_name": fulltext_index_name,
"query_vector": query_vector,
},
)
custom_embeddings.embed_query.assert_not_called()


def test_error_when_hybrid_search_only_text_no_embedder(hybrid_retriever):
query_text = "may thy knife chip and shatter"
top_k = 5

with pytest.raises(ValueError, match="Embedding method required for text query."):
hybrid_retriever.search(
query_text=query_text,
top_k=top_k,
)


def test_hybrid_search_retriever_search_missing_embedder_for_text(
hybrid_retriever,
):
query_text = "may thy knife chip and shatter"
top_k = 5

with pytest.raises(ValueError, match="Embedding method required for text query"):
hybrid_retriever.search(
query_text=query_text,
top_k=top_k,
)


@patch("neo4j_genai.HybridRetriever._verify_version")
def test_hybrid_retriever_return_properties(_verify_version_mock, driver):
embed_query_vector = [1.0 for _ in range(1536)]
custom_embeddings = MagicMock()
custom_embeddings.embed_query.return_value = embed_query_vector
vector_index_name = "my-index"
fulltext_index_name = "my-fulltext-index"
query_text = "may thy knife chip and shatter"
top_k = 5
return_properties = ["node-property-1", "node-property-2"]
retriever = HybridRetriever(
driver,
vector_index_name,
fulltext_index_name,
custom_embeddings,
return_properties,
)
driver.execute_query.return_value = [
[{"node": "dummy-node", "score": 1.0}],
None,
None,
]
search_query = get_search_query(SearchType.HYBRID, return_properties)

records = retriever.search(query_text=query_text, top_k=top_k)

custom_embeddings.embed_query.assert_called_once_with(query_text)
driver.execute_query.assert_called_once_with(
search_query,
{
"vector_index_name": vector_index_name,
"top_k": top_k,
"query_text": query_text,
"fulltext_index_name": fulltext_index_name,
"query_vector": embed_query_vector,
},
)
assert records == [{"node": "dummy-node", "score": 1.0}]


@patch("neo4j_genai.HybridCypherRetriever._verify_version")
def test_hybrid_cypher_retrieval_query_with_params(_verify_version_mock, driver):
embed_query_vector = [1.0 for _ in range(1536)]
custom_embeddings = MagicMock()
custom_embeddings.embed_query.return_value = embed_query_vector
vector_index_name = "my-index"
fulltext_index_name = "my-fulltext-index"
query_text = "may thy knife chip and shatter"
top_k = 5
retrieval_query = """

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

(Not important) It could be out of scope: Should we test cases when input retrieval query or index names are wrong?

RETURN node.id AS node_id, node.text AS text, score, {test: $param} AS metadata
"""
query_params = {
"param": "dummy-param",
}
retriever = HybridCypherRetriever(
driver,
vector_index_name,
fulltext_index_name,
retrieval_query,
custom_embeddings,
)
driver.execute_query.return_value = [
[{"node_id": 123, "text": "dummy-text", "score": 1.0}],
None,
None,
]
search_query = get_search_query(SearchType.HYBRID, retrieval_query=retrieval_query)

records = retriever.search(
query_text=query_text,
top_k=top_k,
query_params=query_params,
)

custom_embeddings.embed_query.assert_called_once_with(query_text)

driver.execute_query.assert_called_once_with(
search_query,
{
"vector_index_name": vector_index_name,
"top_k": top_k,
"query_text": query_text,
"fulltext_index_name": fulltext_index_name,
"query_vector": embed_query_vector,
"param": "dummy-param",
},
)

assert records == [{"node_id": 123, "text": "dummy-text", "score": 1.0}]
Loading
Loading