Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feature/add plots to result #255

Merged
merged 14 commits into from
Jun 11, 2024
Merged
85 changes: 53 additions & 32 deletions cellpack/autopack/Analysis.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@ def __init__(
self.figures_path = self.output_path / "figures"
self.figures_path.mkdir(parents=True, exist_ok=True)
self.seed_to_results = {}
self.helper = autopack.helper

@staticmethod
def cartesian_to_sph(xyz, center=None):
Expand Down Expand Up @@ -153,6 +154,7 @@ def plot_distance_distribution(self, all_ingredient_distances):
title_str=ingr_key,
x_label="pairwise distance",
y_label="count",
save_png=True,
)

def get_obj_dict(self, packing_results_path):
Expand Down Expand Up @@ -586,33 +588,53 @@ def run_analysis_workflow(
**analysis_config["create_report"],
)

def histogram(self, distances, filename, title_str="", x_label="", y_label=""):
plt.clf()
# calculate histogram
nbins = int(numpy.sqrt(len(distances)))
if nbins < 2:
return
y, bin_edges = numpy.histogram(distances, bins=nbins)
bincenters = 0.5 * (bin_edges[1:] + bin_edges[:-1])

# calculate standard error for values in each bin
bin_inds = numpy.digitize(distances, bin_edges)
x_err_vals = numpy.zeros(y.shape)
for bc in range(nbins):
dist_vals = distances[bin_inds == (bc + 1)]
if len(dist_vals) > 1:
x_err_vals[bc] = numpy.std(dist_vals)
else:
x_err_vals[bc] = 0
y_err_vals = numpy.sqrt(y * (1 - y / numpy.sum(y)))
# set bin width
dbin = 0.9 * (bincenters[1] - bincenters[0])
plt.bar(bincenters, y, width=dbin, color="r", xerr=x_err_vals, yerr=y_err_vals)
plt.title(title_str)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.savefig(filename)
plt.close()
def histogram(
self,
distances,
filename,
title_str="",
x_label="",
y_label="",
add_to_result=True,
save_png=False,
):
if add_to_result:
# add histogrm to result file and display on the web page
self.helper.plot_data.add_histogram(
title=f"{title_str}: {x_label}",
xaxis_title=x_label,
traces={y_label: numpy.array(distances)},
)
if save_png:
# use matplotlib to create histogram and save as png
plt.clf()
# calculate histogram
nbins = int(numpy.sqrt(len(distances)))
if nbins < 2:
return
y, bin_edges = numpy.histogram(distances, bins=nbins)
bincenters = 0.5 * (bin_edges[1:] + bin_edges[:-1])

# calculate standard error for values in each bin
bin_inds = numpy.digitize(distances, bin_edges)
x_err_vals = numpy.zeros(y.shape)
for bc in range(nbins):
dist_vals = distances[bin_inds == (bc + 1)]
if len(dist_vals) > 1:
x_err_vals[bc] = numpy.std(dist_vals)
else:
x_err_vals[bc] = 0
y_err_vals = numpy.sqrt(y * (1 - y / numpy.sum(y)))
# set bin width
dbin = 0.9 * (bincenters[1] - bincenters[0])
plt.bar(
bincenters, y, width=dbin, color="r", xerr=x_err_vals, yerr=y_err_vals
)
plt.title(title_str)
plt.xlabel(x_label)
plt.ylabel(y_label)
plt.savefig(filename)
plt.close()

def plot(self, rdf, radii, file_name):
plt.clf()
Expand Down Expand Up @@ -979,7 +1001,6 @@ def pack_one_seed(
seed = int(seed_list[seed_index])
seed_basename = self.env.add_seed_number_to_base_name(seed)
self.env.reset()
self.env.saveResult = True
numpy.random.seed(seed)
self.build_grid()
two_d = self.env.is_two_d()
Expand Down Expand Up @@ -1123,7 +1144,6 @@ def pack_one_seed(
)
grid_image_writer = gradient.create_voxelization(grid_image_writer)
grid_image_writer.export_image()

return (
center_distance_dict,
pairwise_distance_dict,
Expand Down Expand Up @@ -1291,9 +1311,6 @@ def doloop(
self.writeJSON(ingredient_occurences_file, ingredient_occurence_dict)
self.writeJSON(ingredient_key_file, ingredient_key_dict)

if number_of_packings > 1:
Writer().save_as_simularium(self.env, self.seed_to_results)

all_ingredient_positions = self.combine_results_from_seeds(
ingredient_position_dict
)
Expand Down Expand Up @@ -1386,3 +1403,7 @@ def doloop(
x_label="angles Z",
y_label="count",
)
if number_of_packings > 1:
for seed, result in self.seed_to_results.items():
Writer().save_as_simularium(self.env, {seed: result})
Writer().save_as_simularium(self.env, self.seed_to_results)
7 changes: 5 additions & 2 deletions cellpack/autopack/Environment.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,11 @@ def __init__(self, config=None, recipe=None):
self.name = name
self.version = recipe.get("version", "default")
# saving/pickle option
self.saveResult = "out" in config
self.saveResult = (
"out" in config
and not config["save_analyze_result"]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Why do we have these additional conditions here? Wouldn't this prevent saving simularium files completely if there is more than one packing?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

it's because the saving happens from the Analysis class instead of the Env class

and not config["number_of_packings"] > 1
)
self.out_folder = create_output_dir(config["out"], name, config["place_method"])
self.base_name = f"{self.name}_{config['name']}_{self.version}"
self.grid_file_out = (
Expand Down Expand Up @@ -2174,7 +2178,6 @@ def pack_grid(
pbar.close()
self.log.info("time to fill %d", t2 - t1)
all_objects = self.prep_molecules_for_save(distances, free_points, nbFreePoints)

if self.saveResult:
self.save_result(
free_points,
Expand Down
36 changes: 36 additions & 0 deletions cellpack/autopack/upy/simularium/plots.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
import numpy as np
from simulariumio import ScatterPlotData, HistogramPlotData


class PlotData:
def __init__(self):
self.plot_list = [] # list of tuples

def _add_plot(self, plot):
self.plot_list.append(plot)

def add_scatter(self, title, xaxis_title, yaxis_title, xtrace, ytraces):
self._add_plot(
(
"scatter",
ScatterPlotData(
title=title,
xaxis_title=xaxis_title,
yaxis_title=yaxis_title,
xtrace=np.array(xtrace),
ytraces={key: np.array(value) for key, value in ytraces.items()},
),
)
)

def add_histogram(self, title, xaxis_title, traces):
self._add_plot(
(
"histogram",
HistogramPlotData(
title=title,
xaxis_title=xaxis_title,
traces={key: np.array(value) for key, value in traces.items()},
),
)
)
8 changes: 7 additions & 1 deletion cellpack/autopack/upy/simularium/simularium_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
from simulariumio.constants import DISPLAY_TYPE, VIZ_TYPE

from cellpack.autopack.upy import hostHelper
from cellpack.autopack.upy.simularium.plots import PlotData
from cellpack.autopack.DBRecipeHandler import DBUploader, DBMaintenance
from cellpack.autopack.interface_objects.database_ids import DATABASE_IDS
import collada
Expand Down Expand Up @@ -112,6 +113,7 @@ def __init__(self, master=None, vi=None):
self.nogui = True
self.hext = "dae"
self.max_fiber_length = 0
self.plot_data = PlotData()

@staticmethod
def format_rgb_color(color):
Expand Down Expand Up @@ -1370,7 +1372,11 @@ def writeToFile(self, file_name, bb, recipe_name, version):
time_units=UnitData("ns"), # nanoseconds
spatial_units=UnitData("nm"), # nanometers
)
TrajectoryConverter(converted_data).save(file_name, False)
converter = TrajectoryConverter(converted_data)
plot_list = self.plot_data.plot_list
for type, plot in plot_list:
converter.add_plot(plot, type)
converter.save(file_name, False)
return file_name

def raycast(self, **kw):
Expand Down
2 changes: 2 additions & 0 deletions cellpack/autopack/writers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,8 @@ def save_as_simularium(self, env, seed_to_results_map):
is_aggregate = len(seed_to_results_map) > 1
if is_aggregate:
result_file_name = f"{env.result_file.split('_seed')[0]}_all"
else:
result_file_name = f"{env.result_file.split('_seed')[0]}_seed_{list(seed_to_results_map.keys())[0]}"
file_name = env.helper.writeToFile(
result_file_name, env.boundingBox, env.name, env.version
)
Expand Down
Loading