Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Additional tests for operators #384

Merged
merged 2 commits into from
Nov 25, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 66 additions & 19 deletions tests/test_operators.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,73 +5,120 @@
from pina.operators import grad, div, laplacian


def func_vec(x):
def func_vector(x):
return x**2


def func_scalar(x):
print('X')
x_ = x.extract(['x'])
y_ = x.extract(['y'])
mu_ = x.extract(['mu'])
return x_**2 + y_**2 + mu_**3
z_ = x.extract(['z'])
return x_**2 + y_**2 + z_**2


data = torch.rand((20, 3), requires_grad=True)
inp = LabelTensor(data, ['x', 'y', 'mu'])
labels = ['a', 'b', 'c']
tensor_v = LabelTensor(func_vec(inp), labels)
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), labels[0])

inp = LabelTensor(torch.rand((20, 3), requires_grad=True), ['x', 'y', 'z'])
tensor_v = LabelTensor(func_vector(inp), ['a', 'b', 'c'])
tensor_s = LabelTensor(func_scalar(inp).reshape(-1, 1), ['a'])

def test_grad_scalar_output():
grad_tensor_s = grad(tensor_s, inp)
true_val = 2*inp
assert grad_tensor_s.shape == inp.shape
assert grad_tensor_s.labels == [
f'd{tensor_s.labels[0]}d{i}' for i in inp.labels
]
assert torch.allclose(grad_tensor_s, true_val)

grad_tensor_s = grad(tensor_s, inp, d=['x', 'y'])
true_val = 2*inp.extract(['x', 'y'])
assert grad_tensor_s.shape == (inp.shape[0], 2)
assert grad_tensor_s.labels == [
f'd{tensor_s.labels[0]}d{i}' for i in ['x', 'y']
]
assert torch.allclose(grad_tensor_s, true_val)


def test_grad_vector_output():
grad_tensor_v = grad(tensor_v, inp)
true_val = torch.cat(
(2*inp.extract(['x']),
torch.zeros_like(inp.extract(['y'])),
torch.zeros_like(inp.extract(['z'])),
torch.zeros_like(inp.extract(['x'])),
2*inp.extract(['y']),
torch.zeros_like(inp.extract(['z'])),
torch.zeros_like(inp.extract(['x'])),
torch.zeros_like(inp.extract(['y'])),
2*inp.extract(['z'])
), dim=1
)
assert grad_tensor_v.shape == (20, 9)
grad_tensor_v = grad(tensor_v, inp, d=['x', 'mu'])
assert grad_tensor_v.labels == [
f'd{j}d{i}' for j in tensor_v.labels for i in inp.labels
]
assert torch.allclose(grad_tensor_v, true_val)

grad_tensor_v = grad(tensor_v, inp, d=['x', 'y'])
true_val = torch.cat(
(2*inp.extract(['x']),
torch.zeros_like(inp.extract(['y'])),
torch.zeros_like(inp.extract(['x'])),
2*inp.extract(['y']),
torch.zeros_like(inp.extract(['x'])),
torch.zeros_like(inp.extract(['y']))
), dim=1
)
assert grad_tensor_v.shape == (inp.shape[0], 6)
assert grad_tensor_v.labels == [
f'd{j}d{i}' for j in tensor_v.labels for i in ['x', 'y']
]
assert torch.allclose(grad_tensor_v, true_val)


def test_div_vector_output():
grad_tensor_v = div(tensor_v, inp)
assert grad_tensor_v.shape == (20, 1)
grad_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'mu'])
assert grad_tensor_v.shape == (inp.shape[0], 1)
div_tensor_v = div(tensor_v, inp)
true_val = 2*torch.sum(inp, dim=1).reshape(-1,1)
assert div_tensor_v.shape == (20, 1)
assert div_tensor_v.labels == [f'dadx+dbdy+dcdz']
assert torch.allclose(div_tensor_v, true_val)

div_tensor_v = div(tensor_v, inp, components=['a', 'b'], d=['x', 'y'])
true_val = 2*torch.sum(inp.extract(['x', 'y']), dim=1).reshape(-1,1)
assert div_tensor_v.shape == (inp.shape[0], 1)
assert div_tensor_v.labels == [f'dadx+dbdy']
assert torch.allclose(div_tensor_v, true_val)


def test_laplacian_scalar_output():
laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
laplace_tensor_s = laplacian(tensor_s, inp)
true_val = 6*torch.ones_like(laplace_tensor_s)
assert laplace_tensor_s.shape == tensor_s.shape
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val)

laplace_tensor_s = laplacian(tensor_s, inp, components=['a'], d=['x', 'y'])
true_val = 4*torch.ones_like(laplace_tensor_s)
assert all((laplace_tensor_s - true_val == 0).flatten())
assert laplace_tensor_s.shape == tensor_s.shape
assert laplace_tensor_s.labels == [f"dd{tensor_s.labels[0]}"]
assert torch.allclose(laplace_tensor_s, true_val)


def test_laplacian_vector_output():
laplace_tensor_v = laplacian(tensor_v, inp)
true_val = 2*torch.ones_like(tensor_v)
assert laplace_tensor_v.shape == tensor_v.shape
assert laplace_tensor_v.labels == [
f'dd{i}' for i in tensor_v.labels
]
assert torch.allclose(laplace_tensor_v, true_val)

laplace_tensor_v = laplacian(tensor_v,
inp,
components=['a', 'b'],
d=['x', 'y'])
true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b']))
assert laplace_tensor_v.shape == tensor_v.extract(['a', 'b']).shape
assert laplace_tensor_v.labels == [
f'dd{i}' for i in ['a', 'b']
]
true_val = 2*torch.ones_like(tensor_v.extract(['a', 'b']))
assert all((laplace_tensor_v - true_val == 0).flatten())
assert torch.allclose(laplace_tensor_v, true_val)
Loading