Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Don't use implicitly elapsed_time in autotuner #3036

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion benchmarks/triton_kernels_benchmark/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
from .benchmark_testing import do_bench, assert_close, perf_report, Benchmark, BENCHMARKING_METHOD # type: ignore # noqa: F401
from .benchmark_testing import do_bench, make_do_bench_for_autotune, assert_close, perf_report, Benchmark, BENCHMARKING_METHOD # type: ignore # noqa: F401

if BENCHMARKING_METHOD == "UPSTREAM_PYTORCH_PROFILER":
from triton.runtime import driver
Expand Down
8 changes: 8 additions & 0 deletions benchmarks/triton_kernels_benchmark/benchmark_testing.py
Original file line number Diff line number Diff line change
Expand Up @@ -160,6 +160,14 @@ def extract_kernels(funcs):
raise NotImplementedError(f"BENCHMARKING_METHOD: {BENCHMARKING_METHOD} isn't implemented")


def make_do_bench_for_autotune():

def autotuner_do_bench(*args, **kwargs):
return do_bench(*args, n_warmup=10, n_repeat=10, **kwargs)

return autotuner_do_bench


def assert_close(x, y, atol=None, rtol=None, err_msg=""):
import numpy as np
import torch
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,7 @@ def _attn_fwd(Q, K, V, sm_scale, M, Out, #
for w in [8, 16, 32] \
]

tuner = triton.autotune(configs, key=['N_CTX', 'BLOCK_DMODEL'])
tuner = triton.autotune(configs, key=['N_CTX', 'BLOCK_DMODEL'], do_bench=benchmark_suit.make_do_bench_for_autotune())
tune_attn_fwd = tuner(_attn_fwd)


Expand Down
1 change: 1 addition & 0 deletions benchmarks/triton_kernels_benchmark/fused_softmax.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ def naive_softmax(x):
triton.Config({"threads_per_warp": 16}, num_warps=4),
],
key=["BLOCK_SIZE_X", "BLOCK_SIZE_Y"],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_cols, BLOCK_SIZE_X: tl.constexpr,
Expand Down
2 changes: 2 additions & 0 deletions benchmarks/triton_kernels_benchmark/gemm_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
num_stages=s, num_warps=32) for s in [2, 3]
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers(
Expand Down Expand Up @@ -112,6 +113,7 @@ def matmul_kernel_with_block_pointers(
num_stages=s, num_warps=4) for s in [2]
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers_batched(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
num_stages=2, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers(
Expand Down Expand Up @@ -106,6 +107,7 @@ def matmul_kernel_with_block_pointers(
num_stages=2, num_warps=4),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers_batched(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ def gelu(x):
num_stages=2, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers(
Expand Down Expand Up @@ -119,6 +120,7 @@ def matmul_kernel_with_block_pointers(
num_stages=2, num_warps=4),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers_batched(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
num_stages=2, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers(
Expand Down Expand Up @@ -104,6 +105,7 @@ def matmul_kernel_with_block_pointers(
num_stages=2, num_warps=4),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def matmul_kernel_with_block_pointers_batched(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
num_stages=4, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def _kernel(A, B, C, #
Expand Down
2 changes: 2 additions & 0 deletions benchmarks/triton_kernels_benchmark/gemm_streamk_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,7 @@ def mac_loop(
num_stages=2, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def first_wave(
Expand Down Expand Up @@ -140,6 +141,7 @@ def first_wave(
num_stages=2, num_warps=32),
],
key=['M', 'N', 'K'],
do_bench=benchmark_suit.make_do_bench_for_autotune(),
)
@triton.jit
def full_tiles(
Expand Down
2 changes: 1 addition & 1 deletion python/triton/runtime/autotuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -361,7 +361,7 @@ def kernel(x_ptr, x_size, BLOCK_SIZE: tl.constexpr):
def decorator(fn):
return Autotuner(fn, fn.arg_names, configs, key, reset_to_zero, restore_value, pre_hook=pre_hook,
post_hook=post_hook, prune_configs_by=prune_configs_by, warmup=warmup, rep=rep,
use_cuda_graph=use_cuda_graph)
use_cuda_graph=use_cuda_graph, do_bench=do_bench)

return decorator

Expand Down