Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add experiment tracking integration to text, image classification & LLM finetuning #301

Merged
merged 11 commits into from
Oct 22, 2023
8 changes: 8 additions & 0 deletions src/autotrain/cli/run_image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -203,6 +203,13 @@ def register_subcommand(parser: ArgumentParser):
"required": False,
"type": str,
},
{
"arg": "--log",
"help": "Use experiment tracking",
"required": False,
"type": str,
"default": "none",
},
]
run_text_classification_parser = parser.add_parser(
"image-classification", description="✨ Run AutoTrain Image Classification"
Expand Down Expand Up @@ -291,6 +298,7 @@ def run(self):
fp16=self.args.fp16,
push_to_hub=self.args.push_to_hub,
repo_id=self.args.repo_id,
log=self.args.log,
)
params.save(output_dir=self.args.project_name)
if self.num_gpus == 1:
Expand Down
8 changes: 8 additions & 0 deletions src/autotrain/cli/run_llm.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,6 +340,13 @@ def register_subcommand(parser: ArgumentParser):
"action": "store_true",
"alias": ["--use-flash-attention-2", "--use-fa2"],
},
{
"arg": "--log",
"help": "Use experiment tracking",
"required": False,
"type": str,
"default": "none",
},
{
"arg": "--disable_gradient_checkpointing",
"help": "Disable gradient checkpointing",
Expand Down Expand Up @@ -488,6 +495,7 @@ def run(self):
merge_adapter=self.args.merge_adapter,
username=self.args.username,
use_flash_attention_2=self.args.use_flash_attention_2,
log=self.args.log,
rejected_text_column=self.args.rejected_text_column,
disable_gradient_checkpointing=self.args.disable_gradient_checkpointing,
)
Expand Down
8 changes: 8 additions & 0 deletions src/autotrain/cli/run_text_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,13 @@ def register_subcommand(parser: ArgumentParser):
"required": False,
"type": str,
},
{
"arg": "--log",
"help": "Use experiment tracking",
"required": False,
"type": str,
"default": "none",
},
]
run_text_classification_parser = parser.add_parser(
"text-classification", description="✨ Run AutoTrain Text Classification"
Expand Down Expand Up @@ -326,6 +333,7 @@ def run(self):
repo_id=self.args.repo_id,
token=self.args.token,
username=self.args.username,
log=self.args.log,
)

if self.args.backend.startswith("spaces"):
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/clm/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ def train(config):

else:
logging_steps = config.logging_steps

training_args = dict(
output_dir=config.project_name,
per_device_train_batch_size=config.batch_size,
Expand All @@ -316,7 +316,7 @@ def train(config):
save_total_limit=config.save_total_limit,
save_strategy=config.save_strategy,
gradient_accumulation_steps=config.gradient_accumulation,
report_to="tensorboard",
report_to=config.log,
auto_find_batch_size=config.auto_find_batch_size,
lr_scheduler_type=config.scheduler,
optim=config.optimizer,
Expand Down
1 change: 1 addition & 0 deletions src/autotrain/trainers/clm/params.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,6 +46,7 @@ class LLMTrainingParams(BaseModel):
merge_adapter: bool = Field(False, title="Merge adapter")
username: str = Field(None, title="Hugging Face Username")
use_flash_attention_2: bool = Field(False, title="Use flash attention 2")
log: str = Field("none", title="Logging using experiment tracking")
disable_gradient_checkpointing: bool = Field(False, title="Gradient checkpointing")

def save(self, output_dir):
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,7 @@ def train(co2_tracker, payload, huggingface_token, model_path):
fp16 = True
if device == "cpu":
fp16 = False

training_args = dict(
output_dir=model_path,
per_device_train_batch_size=job_config.train_batch_size,
Expand All @@ -248,7 +248,7 @@ def train(co2_tracker, payload, huggingface_token, model_path):
save_strategy="epoch",
disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)),
gradient_accumulation_steps=job_config.gradient_accumulation_steps,
report_to="none",
report_to=job_config.log,
auto_find_batch_size=True,
lr_scheduler_type=job_config.scheduler,
optim=job_config.optimizer,
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/image_classification/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def train(config):

else:
logging_steps = config.logging_steps

training_args = dict(
output_dir=config.project_name,
per_device_train_batch_size=config.batch_size,
Expand All @@ -111,7 +111,7 @@ def train(config):
save_total_limit=config.save_total_limit,
save_strategy=config.save_strategy,
gradient_accumulation_steps=config.gradient_accumulation,
report_to="tensorboard",
report_to=config.log,
auto_find_batch_size=config.auto_find_batch_size,
lr_scheduler_type=config.scheduler,
optim=config.optimizer,
Expand Down
1 change: 1 addition & 0 deletions src/autotrain/trainers/image_classification/params.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ class ImageClassificationParams(BaseModel):
evaluation_strategy: str = Field("epoch", title="Evaluation strategy")
image_column: str = Field("image", title="Image column")
target_column: str = Field("target", title="Target column")
log: str = Field("none", title="Logging using experiment tracking")

def __str__(self):
data = self.dict()
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/lm_trainer.py
rishiraj marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -387,7 +387,7 @@ def group_texts(examples):
logging_steps = int(0.2 * len(valid_data) / job_config.train_batch_size)
if logging_steps == 0:
logging_steps = 1

training_args = dict(
output_dir=model_path,
per_device_train_batch_size=job_config.train_batch_size,
Expand All @@ -400,7 +400,7 @@ def group_texts(examples):
save_strategy="epoch",
disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)),
gradient_accumulation_steps=job_config.gradient_accumulation_steps,
report_to="none",
report_to=job_config.log,
auto_find_batch_size=True,
lr_scheduler_type=job_config.scheduler,
optim=job_config.optimizer,
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/text_classification.py
rishiraj marked this conversation as resolved.
Show resolved Hide resolved
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ def train(co2_tracker, payload, huggingface_token, model_path):
fp16 = True
if model_config.model_type in FP32_MODELS or device == "cpu":
fp16 = False

training_args = dict(
output_dir="/tmp/autotrain",
per_device_train_batch_size=job_config.train_batch_size,
Expand All @@ -219,7 +219,7 @@ def train(co2_tracker, payload, huggingface_token, model_path):
save_strategy="epoch",
disable_tqdm=not bool(os.environ.get("ENABLE_TQDM", 0)),
gradient_accumulation_steps=job_config.gradient_accumulation_steps,
report_to="none",
report_to=job_config.log,
auto_find_batch_size=True,
lr_scheduler_type=job_config.scheduler,
optim=job_config.optimizer,
Expand Down
4 changes: 2 additions & 2 deletions src/autotrain/trainers/text_classification/__main__.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,7 @@ def train(config):

else:
logging_steps = config.logging_steps

training_args = dict(
output_dir=config.project_name,
per_device_train_batch_size=config.batch_size,
Expand All @@ -126,7 +126,7 @@ def train(config):
save_total_limit=config.save_total_limit,
save_strategy=config.save_strategy,
gradient_accumulation_steps=config.gradient_accumulation,
report_to="tensorboard",
report_to=config.log,
auto_find_batch_size=config.auto_find_batch_size,
lr_scheduler_type=config.scheduler,
optim=config.optimizer,
Expand Down
1 change: 1 addition & 0 deletions src/autotrain/trainers/text_classification/params.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ class TextClassificationParams(BaseModel):
repo_id: str = Field(None, title="Repo id")
evaluation_strategy: str = Field("epoch", title="Evaluation strategy")
username: str = Field(None, title="Hugging Face Username")
log: str = Field("none", title="Logging using experiment tracking")

def __str__(self):
data = self.dict()
Expand Down
Loading