Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks.
Our network takes blurry image as an input and procude the corresponding sharp estimate, as in the example:
The model we use is Conditional Wasserstein GAN with Gradient Penalty + Perceptual loss based on VGG-19 activations. Such architecture also gives good results on other image-to-image translation problems (super resolution, colorization, inpainting, dehazing etc.)
- cd ~/DeblurGAN
- ./install_data.sh
- or
- bash -x ./install_data.sh
- step 1 open terminal
- step 2 pip3 install visdom
- step 3 python3 -m visdom.server
- step 4 open another terminal
- step 5 cd ~/DeblurGAN
- step 6 python3 ./train.py --dataroot ./data/combined --resize_or_crop crop --cuda True
- If you do not want to use visdom.server then skip step 1~6 and use these commands
- python3 ./train.py --dataroot ./data/combined --resize_or_crop crop --display_id -1 --cuda True
- [----------Resume training--------------]
- python3 ./train.py --dataroot ./data/combined --resize_or_crop crop --display_id -1 --cuda True --resume True
- [----------FPN101 and Wgan-gp------]
- python3 ./train.py --dataroot ./data/combined --resize_or_crop crop --display_id -1 --cuda True --which_model_netG FPN101 --gan_type wgan-gp
- python3 ./test.py --dataroot ./data/blurred --model test --dataset_mode single --cuda True
- [----------FPN101----------]
- python3 ./test.py --dataroot ./data/blurred --model test --dataset_mode single --cuda True --which_model_netG FPN101
https://drive.google.com/file/d/1vGiqFXa177sCGHEuKhDKQ0VxvZZ2qpZg
http://fatalfeel.blogspot.com/2013/12/deblurgan-image-synthesis-and-analysis.html