-
Notifications
You must be signed in to change notification settings - Fork 5
/
test.py
46 lines (41 loc) · 1.5 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.model_select import create_model
from util.visualizer import Visualizer
from util import html
opt = TestOptions().GetOption()
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
model = create_model(opt)
visualizer = Visualizer(opt)
# create website
#web_dir = os.path.join(opt.output_dir, opt.name, '%s_%s' % (opt.phase, model.s_epoch))
#webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, model.s_epoch))
web_dir = opt.output_dir
webpage = html.HTML(web_dir, 'Experiment, Phase = %s, Epoch = %s' % (opt.phase, model.s_epoch+1))
# test
avgPSNR = 0.0
avgSSIM = 0.0
counter = 0
for i, data in enumerate(dataset):
if i >= opt.how_many:
break
counter = i
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
#avgPSNR += PSNR(visuals['fake_B'],visuals['real_B'])
#pilFake = Image.fromarray(visuals['fake_B'])
#pilReal = Image.fromarray(visuals['real_B'])
#avgSSIM += SSIM(pilFake).cw_ssim_value(pilReal)
img_path = model.get_image_paths()
print('process image... %s' % img_path)
visualizer.save_images(webpage, visuals, img_path)
#avgPSNR /= counter
#avgSSIM /= counter
#print('PSNR = %f, SSIM = %f' % (avgPSNR, avgSSIM))
webpage.save()