This project focuses on forecasting energy consumption using various time series models.
- XGBoost
- Prophet
TimeSeriesForecasting_Sep2024/
├── data/
│ ├── raw/ # Raw energy consumption data
│ └── processed/ # Processed datasets
├── notebooks/ # Jupyter notebooks for analysis
├── src/
│ ├── models/ # Model implementations
│ └── utils/ # Utility functions
├── main.py # Main script for running predictions
└── streamlit_app.py # Interactive web application
- Ensure the energy consumption data files are in the
data/raw/
directory - Install required dependencies
- Run the Streamlit app:
streamlit run streamlit_app.py
The project uses hourly energy consumption data from various regions:
- PJME_hourly.csv
- AEP_hourly.csv
- COMED_hourly.csv
- etc.