Skip to content

Latest commit

 

History

History
40 lines (31 loc) · 1 KB

README.md

File metadata and controls

40 lines (31 loc) · 1 KB

Energy Consumption Forecasting

This project focuses on forecasting energy consumption using various time series models.

Models Implemented

  • XGBoost
  • Prophet

Project Structure

TimeSeriesForecasting_Sep2024/
├── data/
│   ├── raw/             # Raw energy consumption data
│   └── processed/       # Processed datasets
├── notebooks/          # Jupyter notebooks for analysis
├── src/
│   ├── models/         # Model implementations
│   └── utils/          # Utility functions
├── main.py            # Main script for running predictions
└── streamlit_app.py   # Interactive web application

Getting Started

  1. Ensure the energy consumption data files are in the data/raw/ directory
  2. Install required dependencies
  3. Run the Streamlit app:
    streamlit run streamlit_app.py
    

Data Files

The project uses hourly energy consumption data from various regions:

  • PJME_hourly.csv
  • AEP_hourly.csv
  • COMED_hourly.csv
  • etc.