-
Notifications
You must be signed in to change notification settings - Fork 205
1605EightGrade
All these experiments are done with the new BV_EP100 vocabulary mode as considered in 1605BigVocab.
We have three variants: r8c for ck12 memory snippet sources, r8e for enwiki memory snippet sources, and r8 which has the two merged together. We use r8c as the reference dataset.
- R_r8c_2avgBV_EP100_mask_L1e-5
- R_r8c_2danBV_EP100_mask_L1e-5_W13
- R_r8c_2rnnBV_EP100_L1e-4_mask_i13d13
- R_r8c_2cnnBV_EP100_L1e-4_mask_i13d13 (8)
- R_r8c_2rnncnnBV_EP100_L1e-4_mask_i13d13 (8)
- R_r8c_2a51BV_EP100_L1e-4_mask_fasgmn_crelu (8)
- R_ur8c11299592rnnBV_EP100_mask_rmsprop_mlp
Model | trn Acc | val Acc | val MRR | tst Acc | tst MRR | settings |
---|---|---|---|---|---|---|
avg | 0.505379 | 0.442402 | 0.779080 | 0.400881 | 0.687528 | (defaults) |
±0.024486 | ±0.021844 | ±0.018049 | ±0.015593 | ±0.013768 | ||
DAN | 0.555840 | 0.491422 | 0.816840 | 0.390969 | 0.686856 |
inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
|
±0.038450 | ±0.014991 | ±0.013183 | ±0.007895 | ±0.006521 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
rnn | 0.711967 | 0.381176 | 0.730000 | 0.360705 | 0.658262 |
dropout=1/3 inp_e_dropout=1/3
|
±0.052589 | ±0.015708 | ±0.012071 | ±0.012326 | ±0.008562 | ||
cnn | 0.675973 | 0.442402 | 0.780961 | 0.384086 | 0.686716 |
dropout=1/3 inp_e_dropout=1/3
|
±0.056218 | ±0.012234 | ±0.012751 | ±0.011142 | ±0.009110 | ||
rnncnn | 0.582480 | 0.438725 | 0.780527 | 0.375826 | 0.679659 |
dropout=1/3 inp_e_dropout=1/3
|
±0.056659 | ±0.024469 | ±0.023307 | ±0.014320 | ±0.011600 | ||
attn1511 | 0.724898 | 0.383578 | 0.724826 | 0.357654 | 0.658294 |
focus_act='sigmoid/maxnorm' cnnact='relu'
|
±0.069447 | ±0.011663 | ±0.011245 | ±0.015420 | ±0.011558 | ||
Ubu. RNN w/ MLP | 0.569672 | 0.493873 | 0.827836 | 0.441355 | 0.728019 |
vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add_kw':False} opt='rmsprop'
|
±0.058833 | ±0.012373 | ±0.011304 | ±0.010668 | ±0.007045 |
no-relevance variants
Model | trn Acc | val Acc | val MRR | tst Acc | tst MRR | settings |
---|---|---|---|---|---|---|
avg | 0.445953 | 0.427696 | 0.776331 | 0.366189 | 0.660562 | rel_mode=None |
±0.015408 | ±0.020307 | ±0.016901 | ±0.010194 | ±0.008976 | ||
avg | 0.421363 | 0.411765 | 0.752170 | 0.364262 | 0.657202 |
prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode='bm25'
|
±0.025634 | ±0.025858 | ±0.025434 | ±0.010684 | ±0.008501 | ||
avg | 0.508197 | 0.486520 | 0.813802 | 0.406663 | 0.698505 |
prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] f_add_S2=['bm25']
|
±0.016470 | ±0.007587 | ±0.006840 | ±0.009561 | ±0.007658 | ||
avg | 0.465676 | 0.479167 | 0.812211 | 0.414648 | 0.701333 |
prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode=None f_add_S1=['bm25']
|
±0.008130 | ±0.009752 | ±0.009105 | ±0.007780 | ±0.005593 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
rnn | 0.694160 | 0.355392 | 0.712963 | 0.348568 | 0.648690 |
dropout=1/3 inp_e_dropout=1/3 rel_mode=None
|
±0.106601 | ±0.027719 | ±0.022360 | ±0.014551 | ±0.010562 | ||
cnn | 0.704918 | 0.419118 | 0.761285 | 0.384912 | 0.682740 |
dropout=1/3 inp_e_dropout=1/3 rel_mode=None
|
±0.090636 | ±0.024503 | ±0.022660 | ±0.019742 | ±0.014265 | ||
rnncnn | 0.549693 | 0.446078 | 0.785012 | 0.372247 | 0.675291 |
inp_e_dropout=1/3 dropout=1/3 rel_mode=None
|
±0.050194 | ±0.022817 | ±0.016462 | ±0.023073 | ±0.015974 | ||
attn1511 | 0.783299 | 0.352941 | 0.699653 | 0.351322 | 0.650370 |
rel_mode=None focus_act='sigmoid/maxnorm' cnnact='relu'
|
±0.060942 | ±0.032785 | ±0.032089 | ±0.010044 | ±0.005568 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
Ubu. RNN w/ MLP | 0.494109 | 0.463235 | 0.789641 | 0.416300 | 0.712618 |
vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add':[]} opt='rmsprop' rel_mode=None
|
±0.030447 | ±0.008954 | ±0.007800 | ±0.010789 | ±0.006459 | ||
Ubu. RNN w/ MLP | 0.609631 | 0.433824 | 0.767361 | 0.417952 | 0.711358 |
vocabt='ubuntu' pdim=1 ptscorer=B.mlp_ptscorer dropout=0 inp_e_dropout=0 task1_conf={'ptscorer':B.dot_ptscorer, 'f_add':[]} opt='rmsprop' prescoring='termfreq' prescoring_weightsf='weights-anssel-termfreq-3368350fbcab42e4-bestval.h5' prescoring_input='bm25' f_add=['bm25'] rel_mode=None f_add_S1=['bm25']
|
±0.103653 | ±0.017266 | ±0.020435 | ±0.009468 | ±0.006757 |
(acc is AbcdAccuracy)
r8c:
Model | trn Acc | val Acc | val MRR | tst Acc | tst MRR | settings |
---|---|---|---|---|---|---|
avg | 0.290301 | 0.290850 | 0.638889 | 0.293686 | 0.592443 | (defaults) |
±0.033995 | ±0.024967 | ±0.019934 | ±0.011219 | ±0.011900 | ||
DAN | 0.245902 | 0.303922 | 0.408565 | 0.287812 | 0.427867 |
inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
|
±0.013140 | ±0.030866 | ±0.057874 | ±0.015715 | ±0.046143 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
rnn | 0.722678 | 0.424837 | 0.769676 | 0.390602 | 0.680556 | (defaults) |
±0.156078 | ±0.049935 | ±0.041505 | ±0.033515 | ±0.028432 | ||
cnn | 0.300546 | 0.271242 | 0.618056 | 0.284141 | 0.590576 | (defaults) |
±0.040626 | ±0.030094 | ±0.028330 | ±0.021643 | ±0.011880 | ||
rnncnn | 0.353825 | 0.323529 | 0.668981 | 0.298091 | 0.608498 | (defaults) |
±0.092234 | ±0.044053 | ±0.043229 | ±0.021297 | ±0.019228 | ||
attn1511 | 0.477459 | 0.339869 | 0.687114 | 0.326725 | 0.630003 | (defaults) |
±0.193444 | ±0.038801 | ±0.029131 | ±0.037975 | ±0.030858 |
r8e:
Model | trn Acc | val Acc | val MRR | tst Acc | tst MRR | settings |
---|---|---|---|---|---|---|
avg | 0.280330 | 0.348958 | 0.636616 | 0.266049 | 0.547683 | (defaults) |
±0.044841 | ±0.037472 | ±0.028759 | ±0.018288 | ±0.009624 | ||
DAN | 0.244994 | 0.296875 | 0.534848 | 0.266049 | 0.513158 |
inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
|
±0.027805 | ±0.025047 | ±0.082815 | ±0.008811 | ±0.056038 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
rnn | 0.463486 | 0.361979 | 0.642424 | 0.295062 | 0.575405 | (defaults) |
±0.193759 | ±0.029051 | ±0.018036 | ±0.025256 | ±0.018475 | ||
cnn | 0.219670 | 0.299479 | 0.596212 | 0.261111 | 0.548752 | (defaults) |
±0.014743 | ±0.033359 | ±0.022407 | ±0.013417 | ±0.009095 | ||
rnncnn | 0.316254 | 0.335938 | 0.618182 | 0.258025 | 0.547402 | (defaults) |
±0.068402 | ±0.024596 | ±0.010901 | ±0.014658 | ±0.018273 | ||
attn1511 | 0.397527 | 0.390625 | 0.664141 | 0.236420 | 0.532276 | (defaults) |
±0.069729 | ±0.042338 | ±0.027718 | ±0.028422 | ±0.022669 |
r8:
Model | trn Acc | val Acc | val MRR | tst Acc | tst MRR | settings |
---|---|---|---|---|---|---|
avg | 0.261484 | 0.315104 | 0.594303 | 0.275309 | 0.537929 | (defaults) |
±0.040622 | ±0.029051 | ±0.018859 | ±0.027908 | ±0.019492 | ||
DAN | 0.290342 | 0.302083 | 0.575893 | 0.289506 | 0.542025 |
inp_e_dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
|
±0.017316 | ±0.024444 | ±0.016973 | ±0.010625 | ±0.009295 | ||
-------------------------- | ---------- | ---------- | ---------- | ---------- | ----------- | ---------- |
rnn | 0.392815 | 0.341146 | 0.611529 | 0.300617 | 0.558611 | (defaults) |
±0.165470 | ±0.025782 | ±0.035079 | ±0.014786 | ±0.010929 | ||
cnn | 0.213781 | 0.328125 | 0.568729 | 0.267284 | 0.515060 | (defaults) |
±0.009753 | ±0.051853 | ±0.039688 | ±0.034358 | ±0.066781 | ||
rnncnn | 0.285630 | 0.351562 | 0.620571 | 0.273457 | 0.546830 | (defaults) |
±0.041758 | ±0.045155 | ±0.037842 | ±0.019228 | ±0.011815 | ||
attn1511 | 0.476443 | 0.359375 | 0.619522 | 0.293210 | 0.551151 | (defaults) |
±0.187898 | ±0.035423 | ±0.027051 | ±0.044679 | ±0.024191 |
It seems that r8c is the best dataset to use - r8e or ensemble of both seems no good.
Re-testing r8c with masking enabled and l2reg=1e-4:
6x R_r8c_2avgBV_EP100_L1e-4_mask - 0.398692 (95% [0.328744, 0.468641]):
11290443.arien.ics.muni.cz.R_r8c_2avgBV_EP100_L1e-4_mask etc.
[0.352941, 0.450980, 0.470588, 0.470588, 0.333333, 0.313725, ]
6x R_r8c_2danBV_EP100_L1e-4_mask - 0.405229 (95% [0.359731, 0.450727]):
11290444.arien.ics.muni.cz.R_r8c_2danBV_EP100_L1e-4_mask etc.
[0.352941, 0.352941, 0.392157, 0.470588, 0.431373, 0.431373, ]
16x R_r8c_2avgBV_EP100_mask_L1e-5 - 0.442402 (95% [0.420557, 0.464246]):
11299356.arien.ics.muni.cz.R_r8c_2avgBV_EP100_mask_L1e-5 etc.
[0.470588, 0.450980, 0.352941, 0.490196, 0.333333, 0.431373, 0.470588, 0.450980, 0.431373, 0.470588, 0.470588, 0.470588, 0.450980, 0.450980, 0.450980, 0.431373, ]
16x R_r8c_2danBV_EP100_mask_L1e-5_W13 - 0.491422 (95% [0.476431, 0.506413]):
11299352.arien.ics.muni.cz.R_r8c_2danBV_EP100_mask_L1e-5_W13 etc.
[0.490196, 0.490196, 0.450980, 0.549020, 0.490196, 0.470588, 0.529412, 0.509804, 0.509804, 0.509804, 0.470588, 0.509804, 0.470588, 0.431373, 0.490196, 0.490196, ]
6x R_r8c_2rnnBV_EP100_L1e-4_mask - 0.326797 (95% [0.311460, 0.342134]):
11290445.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask etc.
[0.313725, 0.313725, 0.352941, 0.313725, 0.333333, 0.333333, ]
6x R_r8c_2cnnBV_EP100_L1e-4_mask - 0.431372 (95% [0.402272, 0.460473]):
11290446.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask etc.
[0.450980, 0.431373, 0.450980, 0.372549, 0.450980, 0.431373, ]
6x R_r8c_2rnncnnBV_EP100_L1e-4_mask - 0.382353 (95% [0.333731, 0.430975]):
11290447.arien.ics.muni.cz.R_r8c_2rnncnnBV_EP100_L1e-4_mask etc.
[0.392157, 0.450980, 0.392157, 0.294118, 0.372549, 0.392157, ]
6x R_r8c_2a51BV_EP100_L1e-4_mask - 0.405229 (95% [0.368292, 0.442166]):
11290448.arien.ics.muni.cz.R_r8c_2a51BV_EP100_L1e-4_mask etc.
[0.392157, 0.372549, 0.372549, 0.431373, 0.470588, 0.392157, ]
6x R_r8_2avgBV_EP100_L1e-4 - 0.463542 (95% [0.434107, 0.492976]):
11288548.arien.ics.muni.cz.R_r8_2avgBV_EP100_L1e-4 etc.
[0.468750, 0.468750, 0.468750, 0.468750, 0.500000, 0.406250, ]
6x R_r8_2danBV_EP100_L1e-4 - 0.460938 (95% [0.429898, 0.491977]):
11288549.arien.ics.muni.cz.R_r8_2danBV_EP100_L1e-4 etc.
[0.453125, 0.500000, 0.468750, 0.484375, 0.453125, 0.406250, ]
6x R_r8_2rnnBV_EP100_L1e-4 - 0.354167 (95% [0.326296, 0.382037]):
11288550.arien.ics.muni.cz.R_r8_2rnnBV_EP100_L1e-4 etc.
[0.312500, 0.328125, 0.359375, 0.390625, 0.359375, 0.375000, ]
5x R_r8_2cnnBV_EP100_L1e-4 - 0.400000 (95% [0.304481, 0.495519]):
11288551.arien.ics.muni.cz.R_r8_2cnnBV_EP100_L1e-4 etc.
[0.406250, 0.359375, 0.406250, 0.296875, 0.531250, ]
6x R_r8_2rnncnnBV_EP100_L1e-4 - 0.395833 (95% [0.319117, 0.472550]):
11288552.arien.ics.muni.cz.R_r8_2rnncnnBV_EP100_L1e-4 etc.
[0.484375, 0.406250, 0.437500, 0.421875, 0.375000, 0.250000, ]
6x R_r8_2a51BV_EP100_L1e-4 - 0.361979 (95% [0.324808, 0.399151]):
11288553.arien.ics.muni.cz.R_r8_2a51BV_EP100_L1e-4 etc.
[0.390625, 0.312500, 0.406250, 0.328125, 0.390625, 0.343750, ]
Seems like a good idea!
6x R_r8c_2rnnBV_EP100_L1e-4_mask - 0.326797 (95% [0.311460, 0.342134]):
25x R_r8c_2rnnBV_EP100_L1e-4_mask_i13d13 - 0.381177 (95% [0.365469, 0.396884]):
11299310.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask_i13d13 etc.
[0.431373, 0.411765, 0.372549, 0.411765, 0.352941, 0.333333, 0.372549, 0.352941, 0.352941, 0.411765, 0.333333, 0.411765, 0.411765, 0.352941, 0.372549, 0.392157, 0.411765, 0.431373, 0.313725, 0.294118, 0.431373, 0.392157, 0.431373, 0.372549, 0.372549, ]
6x R_r8c_2rnnBV_EP100_L1e-4_mask_i12d12 - 0.359477 (95% [0.309542, 0.409412]):
11301277.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask_i12d12 etc.
[0.313725, 0.411765, 0.411765, 0.333333, 0.392157, 0.294118, ]
6x R_r8c_2rnnBV_EP100_L1e-4_mask_i23d23 - 0.326797 (95% [0.296123, 0.357472]):
11301264.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask_i23d23 etc.
[0.333333, 0.313725, 0.372549, 0.294118, 0.352941, 0.294118, ]
6x R_r8c_2rnnBV_EP100_L1e-4_mask_i45d45 - 0.320261 (95% [0.285287, 0.355236]):
11299320.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask_i45d45 etc.
[0.313725, 0.352941, 0.333333, 0.313725, 0.352941, 0.254902, ]
i13d13 dropout very worthwhile.
7x R_r8c_2rnnBV_EP100_L1e-5_mask_i13d13 - 0.366947 (95% [0.329764, 0.404129]):
11304784.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-5_mask_i13d13 etc.
[0.392157, 0.392157, 0.313725, 0.352941, 0.431373, 0.372549, 0.313725, ]
L2 regularization not harmful.
4x R_r8c_2rnnBV_EP100_L1e-4_mask_s1_i13d13 - 0.382353 (95% [0.301291, 0.463414]):
11309750.arien.ics.muni.cz.R_r8c_2rnnBV_EP100_L1e-4_mask_s1_i13d13 etc.
[0.333333, 0.450980, 0.411765, 0.333333, ]
Less parameters not clearly beneficial.
5x R_r8_2cnnBV_EP100_L1e-4 - 0.400000 (95% [0.304481, 0.495519]):
6x R_r8_2cnnBV_EP100_L1e-4_c121212 - 0.403646 (95% [0.356866, 0.450426]):
11288556.arien.ics.muni.cz.R_r8_2cnnBV_EP100_L1e-4_c121212 etc.
[0.406250, 0.312500, 0.453125, 0.437500, 0.406250, 0.406250, ]
6x R_r8c_2cnnBV_EP100_L1e-4_mask - 0.431372 (95% [0.402272, 0.460473]):
6x R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet - 0.307190 (95% [0.281525, 0.332854]):
11299928.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet etc.
[0.313725, 0.352941, 0.313725, 0.294118, 0.294118, 0.274510, ]
6x R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet_bal - 0.290850 (95% [0.256384, 0.325316]):
11299930.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet_bal etc.
[0.254902, 0.294118, 0.294118, 0.254902, 0.294118, 0.352941, ]
8x R_r8c_2cnnBV_EP100_L1e-4_mask_bal - 0.424020 (95% [0.404048, 0.443991]):
11304715.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask_bal etc.
[0.411765, 0.411765, 0.450980, 0.411765, 0.431373, 0.411765, 0.470588, 0.392157, ]
Balancing nor ranknet worth it.
8x R_r8c_2cnnBV_EP100_L1e-5_mask - 0.392157 (95% [0.354597, 0.429717]):
11304716.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-5_mask etc.
[0.392157, 0.352941, 0.470588, 0.431373, 0.372549, 0.333333, 0.431373, 0.352941, ]
L2 regularization worthwhile.
8x R_r8c_2cnnBV_EP100_L1e-4_mask_i13d13 - 0.431373 (95% [0.417176, 0.445569]):
11310683.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask_s1_i13d13 etc.
[0.411765, 0.431373, 0.450980, 0.450980, 0.431373, 0.450980, 0.411765, 0.411765, ]
Dropout inconclusive.
8x R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet_balBS8 - 0.294118 (95% [0.268199, 0.320036]):
11311037.arien.ics.muni.cz.R_r8c_2cnnBV_EP100_L1e-4_mask_ranknet_balBS8 etc.
[0.254902, 0.254902, 0.274510, 0.313725, 0.294118, 0.352941, 0.294118, 0.313725, ]
No contrastive loss suitable.
6x R_r8_2a51BV_EP100_L1e-4 - 0.361979 (95% [0.324808, 0.399151]):
6x R_r8_2a51BV_EP100_L1e-4_s2 - 0.390625 (95% [0.339643, 0.441607]):
11289063.arien.ics.muni.cz.R_r8_2a51BV_EP100_L1e-4_s2 etc.
[0.375000, 0.421875, 0.296875, 0.453125, 0.390625, 0.406250, ]
Uh, maybe.
6x R_r8c_2a51BV_EP100_L1e-4_mask - 0.405229 (95% [0.368292, 0.442166]):
6x R_r8c_2a51BV_EP100_L1e-4_mask_1 - 0.366013 (95% [0.309452, 0.422575]):
11290450.arien.ics.muni.cz.R_r8c_2a51BV_EP100_L1e-4_mask_1 etc.
[0.392157, 0.392157, 0.431373, 0.392157, 0.313725, 0.274510, ]
Not so catastrophic as rg, but...
8x R_r8c_2a51BV_EP100_L1e-4_mask_fasgmn_crelu - 0.394608 (95% [0.377342, 0.411874]):
11305165.arien.ics.muni.cz.R_r8c_2a51BV_EP100_L1e-4_mask_fasgmn_crelu etc.
[0.392157, 0.352941, 0.411765, 0.392157, 0.411765, 0.411765, 0.411765, 0.372549, ]
4x R_r8c_2a51BV_EP100_L1e-5_mask_fasgmn_crelu - 0.397059 (95% [0.356528, 0.437590]):
11305166.arien.ics.muni.cz.R_r8c_2a51BV_EP100_L1e-5_mask_fasgmn_crelu etc.
[0.372549, 0.431373, 0.372549, 0.411765, ]
cnnact='relu' and focus_act='sigmoid/maxnorm' seems again pretty good.
8x R_r8c_2a51BV_EP100_L1e-4_mask_fasgmn_crelu_i13d13 - 0.401961 (95% [0.378778, 0.425143]):
11309634.arien.ics.muni.cz.R_r8c_2a51BV_EP100_L1e-4_mask_fasgmn_crelu_i13d13 etc.
[0.450980, 0.411765, 0.352941, 0.411765, 0.372549, 0.392157, 0.411765, 0.411765, ]
6x R_r8c_2rnncnnBV_EP100_L1e-4_mask - 0.382353 (95% [0.333731, 0.430975]):
8x R_r8c_2rnncnnBV_EP100_L1e-4_mask_i13d13 - 0.431372 (95% [0.388783, 0.473962]):
11310703.arien.ics.muni.cz.R_r8c_2rnncnnBV_EP100_L1e-4_mask_i13d13 etc.
[0.470588, 0.372549, 0.352941, 0.450980, 0.509804, 0.470588, 0.431373, 0.392157, ]
Dropout inconclusive.
16x R_ur8c11299592rnnBV_EP100_mask_rmsprop_mlp - 0.493872 (95% [0.481499, 0.506246]):
11305161.arien.ics.muni.cz.R_ur8c11299592rnnBV_EP100_mask_rmsprop_mlp etc.
[0.509804, 0.470588, 0.450980, 0.490196, 0.549020, 0.490196, 0.490196, 0.490196, 0.470588, 0.490196, 0.470588, 0.490196, 0.490196, 0.509804, 0.529412, 0.509804, ]
4x R_ur8c11299592rnnBV_EP100_mask_rmsprop_dot - 0.382353 (95% [0.292736, 0.471969]):
11305162.arien.ics.muni.cz.R_ur8c11299592rnnBV_EP100_mask_rmsprop_dot etc.
[0.313725, 0.470588, 0.372549, 0.372549, ]
8x R_ur8ca51_11299592rnnBV_EP100_mask_rmsprop_mlp - 0.399510 (95% [0.385462, 0.413558]):
11310532.arien.ics.muni.cz.R_ur8ca51_11299592rnnBV_EP100_mask_rmsprop_mlp etc.
[0.392157, 0.411765, 0.411765, 0.372549, 0.392157, 0.392157, 0.431373, 0.392157, ]