-
Notifications
You must be signed in to change notification settings - Fork 205
1604WQM
Baseline based on preliminary testing: cnn
model with cnnsiamese=False
.
On enttok, trainmodel MRR 0.55, val MRR 0.538, but this was on an older dataset version.
Model comparison using dataset without entity replacement:
Model | trainAllMRR | devMRR | testMAP | testMRR | settings |
---|---|---|---|---|---|
attn1511 | 0.894100 | 0.732434 | 0.701140 | 0.728824 |
inp_e_dropout=0 dropout=0
|
±0.024455 | ±0.010177 | ±0.007767 | ±0.004660 | ||
cnn | 0.834471 | 0.689337 | 0.664300 | 0.694464 |
inp_e_dropout=0 dropout=0 cnnsiamese=False
|
±0.027208 | ±0.017536 | ±0.021354 | ±0.018800 | ||
rnn | 0.790574 | 0.676416 | 0.653450 | 0.682013 |
inp_e_dropout=0 dropout=0
|
±0.121752 | ±0.065309 | ±0.067856 | ±0.065095 | ||
cnn | 0.656457 | 0.597415 | 0.562771 | 0.599110 |
inp_e_dropout=0 dropout=0
|
±0.057810 | ±0.030885 | ±0.034142 | ±0.032238 | ||
rnncnn | 0.584183 | 0.546255 | 0.517417 | 0.555994 |
inp_e_dropout=0 dropout=0
|
±0.077842 | ±0.048224 | ±0.051735 | ±0.048143 | ||
avg | 0.497539 | 0.495806 | 0.456750 | 0.503249 |
inp_e_dropout=0 dropout=0 inp_w_dropout=1/3 deep=2 pact='relu'
|
±0.008361 | ±0.006968 | ±0.006505 | ±0.007881 | ||
avg | 0.508851 | 0.493943 | 0.462075 | 0.506396 |
inp_e_dropout=0 dropout=0
|
±0.021817 | ±0.018339 | ±0.013255 | ±0.015074 |
Baseline performance:
4x R_wqme_2cnnS - 0.490903 (95% [0.476349, 0.505457]):
11173576.arien.ics.muni.cz.R_wqme_2cnnS etc.
[0.481998, 0.481802, 0.497626, 0.502186, ]
Baseline performance on non-enttok:
3x R_wqm_2cnnS - 0.469754 (95% [0.448621, 0.490888]):
11173578.arien.ics.muni.cz.R_wqm_2cnnS etc.
[0.466466, 0.481421, 0.461376, ]
Narrower filters - cdim={1:0.5,2:0.5,3:0.5}
:
4x R_wqme_2cnnS_c121212 - 0.504224 (95% [0.481014, 0.527434]):
11173579.arien.ics.muni.cz.R_wqme_2cnnS_c121212 etc.
[0.515580, 0.481513, 0.501481, 0.518323, ]
attn1511:
4x R_wqme_2a51 - 0.508561 (95% [0.477719, 0.539403]):
11172403.arien.ics.muni.cz.R_wqme_2a51 etc.
[0.485712, 0.523578, 0.493444, 0.531510, ]
Smaller batch (80):
4x R_wqme_2cnnS_d0_bs80 - 0.551855 (95% [0.535277, 0.568433]):
11192570.arien.ics.muni.cz.R_wqme_2cnnS_d0_bs80 etc.
[0.549074, 0.542457, 0.546456, 0.569433, ]
Without dropout inp_e_dropout=0 dropout=0
:
4x R_wqme_2cnnS_d0 - 0.619681 (95% [0.553024, 0.686339]):
11173581.arien.ics.muni.cz.R_wqme_2cnnS_d0 etc.
[0.594088, 0.675736, 0.641587, 0.567314, ]
Without dropout, epoch count = 24:
4x R_wqme_2cnnS_d0_nb24 - 0.682384 (95% [0.641784, 0.722983]):
11192526.arien.ics.muni.cz.R_wqme_2cnnS_d0_nb24 etc.
[0.699226, 0.656910, 0.658114, 0.715284, ]
Without dropout, epoch count = 32, expoch fract = 0.5:
3x R_wqme_2cnnS_d0_ef05_nb32 - 0.708962 (95% [0.672337, 0.745588]):
11194607.arien.ics.muni.cz.R_wqme_2cnnS_d0_ef05_nb32 etc.
[0.719661, 0.688114, 0.719112, ]
RNN, without dropout, epoch fract = 0.5:
4x R_wqme_2rnn_d0_ef05 - 0.708217 (95% [0.658453, 0.757982]):
11215149.arien.ics.muni.cz.R_wqme_2rnn_d0_ef05 etc.
[0.654794, 0.729644, 0.730822, 0.717610, ]
TODO:
- Try with balance_class=True
- Try with loss='binary_crossentropy'
- Try with dot-product -
ptscorer=B.dot_ptscorer
.