Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Updates from production, Support for new human-filtering impl #141

Merged
merged 15 commits into from
Jun 13, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 0 additions & 3 deletions sequence_processing_pipeline/FastQCJob.py
Original file line number Diff line number Diff line change
Expand Up @@ -107,9 +107,6 @@ def _find_projects(self, path_to_run_id_data_fastq_dir, is_raw_input):
i1_only = [x for x in files if '_I1_' in x]
i2_only = [x for x in files if '_I2_' in x]

if not self.is_amplicon and len(i1_only) != len(i2_only):
raise PipelineError('counts of I1 and I2 files do not match')

if r1_only:
tmp = ' '.join(r1_only)
if 'trimmed_sequences' in tmp:
Expand Down
2 changes: 1 addition & 1 deletion sequence_processing_pipeline/Job.py
Original file line number Diff line number Diff line change
Expand Up @@ -423,7 +423,7 @@ def extract_project_names_from_fastq_dir(self, path_to_fastq_dir):
# Hence, this method filters for names that fit the above format.
results = []
for dir_name in tmp:
m = re.match(r'^(\w+_\d{5})$', dir_name)
m = re.match(r'^(\w[\w\-_]*_\d{5})$', dir_name)
if m:
results.append(m.groups(0)[0])

Expand Down
80 changes: 55 additions & 25 deletions sequence_processing_pipeline/NuQCJob.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,8 +43,8 @@ def __init__(self, fastq_root_dir, output_path, sample_sheet_path,
minimap_database_paths, queue_name, node_count,
wall_time_limit, jmem, fastp_path, minimap2_path,
samtools_path, modules_to_load, qiita_job_id,
max_array_length, known_adapters_path, bucket_size=8,
length_limit=100, cores_per_task=4):
max_array_length, known_adapters_path, movi_path,
bucket_size=8, length_limit=100, cores_per_task=4):
"""
Submit a slurm job where the contents of fastq_root_dir are processed
using fastp, minimap2, and samtools. Human-genome sequences will be
Expand All @@ -63,6 +63,7 @@ def __init__(self, fastq_root_dir, output_path, sample_sheet_path,
:param modules_to_load: A list of Linux module names to load
:param qiita_job_id: identify Torque jobs using qiita_job_id
:param known_adapters_path: The path to an .fna file of known adapters.
:param movi_path: The path to the Movi executable.
:param bucket_size: the size in GB of each bucket to process
:param length_limit: reads shorter than this will be discarded.
:param cores_per_task: Number of CPU cores per node to request.
Expand All @@ -79,17 +80,18 @@ def __init__(self, fastq_root_dir, output_path, sample_sheet_path,
self.sample_ids = metadata['sample_ids']
self.project_data = metadata['projects']
self.chemistry = metadata['chemistry']
self.minimap_database_paths = minimap_database_paths
self.mmi_file_paths = minimap_database_paths
self.queue_name = queue_name
self.node_count = node_count
self.wall_time_limit = wall_time_limit
# raise an Error if jmem is not a valid floating point value.
self.jmem = float(jmem)
self.jmem = str(int(jmem))
self.fastp_path = fastp_path
self.minimap2_path = minimap2_path
self.samtools_path = samtools_path
self.qiita_job_id = qiita_job_id
self.suffix = 'fastq.gz'
self.movi_path = movi_path

# for projects that use sequence_processing_pipeline as a dependency,
# jinja_env must be set to sequence_processing_pipeline's root path,
Expand Down Expand Up @@ -243,7 +245,7 @@ def run(self, callback=None):

self.counts[self.batch_prefix] = batch_count

export_params = [f"MMI={self.minimap_database_paths}",
export_params = [f"MMI={self.mmi_file_paths}",
f"PREFIX={batch_location}",
f"OUTPUT={self.output_path}",
f"TMPDIR={self.temp_dir}"]
Expand Down Expand Up @@ -396,6 +398,42 @@ def _process_sample_sheet(self):
'projects': lst,
'sample_ids': sample_ids}

def _generate_mmi_filter_cmds(self, mmi_db_paths, working_dir):
initial_input = join(working_dir, "seqs.r1.fastq")
final_output = join(working_dir, "seqs.r1.ALIGN.fastq")

cmds = []

tmp_file1 = join(working_dir, "foo")
tmp_file2 = join(working_dir, "bar")

for count, mmi_db_path in enumerate(mmi_db_paths):
if count == 0:
# prime initial state with unfiltered file and create first of
# two tmp files.
input = initial_input
output = tmp_file1
elif count % 2 == 0:
# alternate between two tmp file names so that the input and
# output are never the same file.
input = tmp_file2
output = tmp_file1
else:
input = tmp_file1
output = tmp_file2

cmds.append(f"minimap2 -2 -ax sr -t 16 {mmi_db_path} {input} -a |"
charles-cowart marked this conversation as resolved.
Show resolved Hide resolved
f" samtools fastq -@ 16 -f 12 -F 256 > {output}")

# rename the latest tmp file to the final output filename.
cmds.append(f"mv {output} {final_output}")

# simple cleanup erases tmp files if they exist.
cmds.append(f"[ -e {tmp_file1} ] && rm {tmp_file1}")
cmds.append(f"[ -e {tmp_file2} ] && rm {tmp_file2}")

return "\n".join(cmds)

def _generate_job_script(self, max_bucket_size):
# bypass generating job script for a force-fail job, since it is
# not needed.
Expand All @@ -404,23 +442,7 @@ def _generate_job_script(self, max_bucket_size):

gigabyte = 1073741824

if max_bucket_size > (3 * gigabyte):
gres_value = 4
else:
gres_value = 2

# As slurm expects memory sizes to be integer values, convert results
# to int to drop floating point component before passing to jinja2 as
# a string.
if max_bucket_size < gigabyte:
mod_wall_time_limit = self.wall_time_limit
mod_jmem = str(int(self.jmem))
elif max_bucket_size < (2 * gigabyte):
mod_wall_time_limit = self.wall_time_limit * 1.5
mod_jmem = str(int(self.jmem * 4.5))
else:
mod_wall_time_limit = self.wall_time_limit * 2
mod_jmem = str(int(self.jmem * 7.5))
gres_value = 4 if max_bucket_size > (3 * gigabyte) else 2
charles-cowart marked this conversation as resolved.
Show resolved Hide resolved

job_script_path = join(self.output_path, 'process_all_fastq_files.sh')
template = self.jinja_env.get_template("nuqc_job.sh")
Expand All @@ -443,6 +465,12 @@ def _generate_job_script(self, max_bucket_size):
if not exists(splitter_binary):
raise ValueError(f'{splitter_binary} does not exist.')

# this method relies on an environment variable defined in nu_qc.sh
# used to define where unfiltered fastq files are and where temp
# files can be created. (${jobd})
mmi_filter_cmds = self._generate_mmi_filter_cmds(self.mmi_file_paths,
"${jobd}")

with open(job_script_path, mode="w", encoding="utf-8") as f:
# the job resources should come from a configuration file

Expand All @@ -453,8 +481,8 @@ def _generate_job_script(self, max_bucket_size):
f.write(template.render(job_name=job_name,
queue_name=self.queue_name,
# should be 4 * 24 * 60 = 4 days
wall_time_limit=mod_wall_time_limit,
mem_in_gb=mod_jmem,
wall_time_limit=self.wall_time_limit,
mem_in_gb=self.jmem,
# Note NuQCJob now maps node_count to
# SLURM -N parameter to act like other
# Job classes.
Expand All @@ -471,7 +499,9 @@ def _generate_job_script(self, max_bucket_size):
splitter_binary=splitter_binary,
modules_to_load=mtl,
length_limit=self.length_limit,
gres_value=gres_value))
gres_value=gres_value,
movi_path=self.movi_path,
mmi_filter_cmds=mmi_filter_cmds))

return job_script_path

Expand Down
9 changes: 8 additions & 1 deletion sequence_processing_pipeline/Pipeline.py
Original file line number Diff line number Diff line change
Expand Up @@ -688,8 +688,15 @@ def get_project_info(self, short_names=False):
for res in bioinformatics.to_dict('records'):
p_name, q_id = self._parse_project_name(res['Sample_Project'],
short_names)
contains_replicates = False

if 'contains_replicates' in res:
if res['contains_replicates'] == 'True':
contains_replicates = True

results.append({'project_name': p_name,
'qiita_id': q_id})
'qiita_id': q_id,
'contains_replicates': contains_replicates})

return results

Expand Down
Loading
Loading