Skip to content

benhenryL/Deblurring-3D-Gaussian-Splatting

Repository files navigation

Deblurring-3D-Gaussian-Splatting (ECCV 2024)

Byeonghyeon Lee*, Howoong Lee*, Xiangyu Sun, Usman Ali, and Eunbyung Park

Project Page   Paper

Our code is based on 3D Gaussian Splatting

05.28: Our paper is updated with new features (ex. camera motion blur deblurring, more experiments, ...) so please check the new paper at https://arxiv.org/abs/2401.00834.

curve

Method Overview

workflow

Our method's overall workflow. Dotted arrows and dashed arrows describe the pipeline for modeling camera motion blur and modeling defocus blur, respectively at training time. Solid arrows show the process of rendering sharp images at the inference time. Please refer to the paper for more details.

Setup

1. Installation

git clone https://github.com/benhenryL/Deblurring-3D-Gaussian-Splatting.git --recursive 
conda env create --file environment.yml
conda activate deblurring_3dgs

2. Dataset

Please download datasets at here. deblur_dataset.zip file includes 4 datasets: real camera motion blur, real defocus blur, synthetic camera motion blur, and synthetic defocus blur. This dataset is originally produced by Deblur-NeRF, but we reran COLMAP to create point clouds and images are identical to the original ones. Even if you already have the dataset, please download this one.

3. Training

python train.py -s <dataset> --expname <name for output files> --config configs/<config file for different dataset>

// ex. python train.py --expname test_ball -s data/real_camera_motion_blur/blurball --config configs/real_camera_motion.txt

4. Evaluation

At every testing iteration, the evaluation result is saved at psnr.txt. Or you can evaluate the trained model with

python render.py -m <model path> -s <dataset>

//ex. python render.py -m output/test_ball -s data/real_camera_motion_blur/blurball

You can also download the pretrained models at here

BibTeX

@misc{lee2024deblurring,
      title={Deblurring 3D Gaussian Splatting}, 
      author={Byeonghyeon Lee and Howoong Lee and Xiangyu Sun and Usman Ali and Eunbyung Park},
      year={2024},
      eprint={2401.00834},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages