-
Notifications
You must be signed in to change notification settings - Fork 9
/
render.py
87 lines (72 loc) · 3.44 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from PIL import Image
import numpy as np
from utils.image_utils import psnr
from metrics import compute_img_metric
def render_set(model_path, name, iteration, views, gaussians, pipeline, background):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "renders")
makedirs(render_path, exist_ok=True)
metric_psnr = []
metric_ssim = []
metric_lpips = []
for idx, view in enumerate(tqdm(views, desc="Rendering and Evaluation progress")):
# rendering
rendering = render(view, gaussians, pipeline, background)["render"]
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + ".png"))
# evaluation
rendering = torch.clamp(rendering, 0.0, 1.0)
gt_image = torch.clamp(view.original_image, 0.0, 1.0)
metric_psnr.append(psnr(rendering, gt_image).mean().double().item())
rendering = rendering.permute(1,2,0)
gt_image = gt_image.permute(1,2,0)
metric_ssim.append(compute_img_metric(rendering, gt_image, 'ssim'))
metric_lpips.append(compute_img_metric(rendering, gt_image, 'lpips').item())
print(f"========={name} dataset=========")
print("PSNR: ", sum(metric_psnr) / len(metric_psnr))
print("SSIM: ", sum(metric_ssim) / len(metric_ssim))
print("LPIPS: ", sum(metric_lpips) / len(metric_lpips))
print(f"================================")
def render_sets(dataset : ModelParams, iteration : int, pipeline : PipelineParams, skip_train : bool, skip_test : bool):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree, 0)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter, scene.getTrainCameras(), gaussians, pipeline, background)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=20000, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test)