Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code cleanups and warnings #46

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -66,9 +66,6 @@ public class AdaptiveBagging implements Learner, Configurable {
/** The distributor processor. */
private BaggingDistributorProcessor distributorP;

/** The input streams for the ensemble, one per member. */
private Stream[] ensembleStreams;

/** The result stream. */
protected Stream resultStream;

Expand Down Expand Up @@ -116,7 +113,8 @@ protected void setLayout() {
}
}

ensembleStreams = new Stream[ensembleSize];
/* The input streams for the ensemble, one per member. */
Stream[] ensembleStreams = new Stream[ensembleSize];
for (int i = 0; i < ensembleSize; i++) {
ensembleStreams[i] = builder.createStream(distributorP);
builder.connectInputShuffleStream(ensembleStreams[i], ensemble[i].getInputProcessor()); // connect streams one-to-one with ensemble members (the type of connection does not matter)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -103,9 +103,6 @@ protected void setLayout() {
Stream predictionStream = this.builder.createStream(distributorP);
this.builder.connectInputKeyStream(predictionStream, classifier.getInputProcessor());

// distributorP.setOutputStream(testingStream);
// distributorP.setPredictionStream(predictionStream);

// Addition to Bagging: stream to train
/* The training stream. */
Stream trainingStream = this.builder.createStream(predictionCombinerP);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,7 @@ private double[] getVotesForInstance(Instance instance) {
int numberOfRulesCovering = 0;

for (ActiveRule rule : ruleSet) {
if (rule.isCovering(instance) == true) {
if (rule.isCovering(instance)) {
numberOfRulesCovering++;
double[] vote = rule.getPrediction(instance);
double error = rule.getCurrentError();
Expand All @@ -179,9 +179,8 @@ private double[] getVotesForInstance(Instance instance) {
double error = defaultRule.getCurrentError();
errorWeightedVote.addVote(vote, error);
}
double[] weightedVote = errorWeightedVote.computeWeightedVote();

return weightedVote;
return errorWeightedVote.computeWeightedVote();
}

public ErrorWeightedVote newErrorWeightedVote() {
Expand Down Expand Up @@ -223,13 +222,13 @@ public void trainOnInstanceImpl(Instance instance) {
Iterator<ActiveRule> ruleIterator = this.ruleSet.iterator();
while (ruleIterator.hasNext()) {
ActiveRule rule = ruleIterator.next();
if (rule.isCovering(instance) == true) {
if (rule.isCovering(instance)) {
rulesCoveringInstance = true;
if (isAnomaly(instance, rule) == false) {
if (!isAnomaly(instance, rule)) {
// Update Change Detection Tests
double error = rule.computeError(instance); // Use adaptive mode error
boolean changeDetected = ((RuleActiveRegressionNode) rule.getLearningNode()).updateChangeDetection(error);
if (changeDetected == true) {
if (changeDetected) {
ruleIterator.remove();
} else {
rule.updateStatistics(instance);
Expand All @@ -245,10 +244,10 @@ public void trainOnInstanceImpl(Instance instance) {
}
}

if (rulesCoveringInstance == false) {
if (!rulesCoveringInstance) {
defaultRule.updateStatistics(instance);
if (defaultRule.getInstancesSeen() % this.gracePeriod == 0.0) {
if (defaultRule.tryToExpand(this.splitConfidence, this.tieThreshold) == true) {
if (defaultRule.tryToExpand(this.splitConfidence, this.tieThreshold)) {
ActiveRule newDefaultRule = newRule(defaultRule.getRuleNumberID(),
(RuleActiveRegressionNode) defaultRule.getLearningNode(),
((RuleActiveRegressionNode) defaultRule.getLearningNode()).getStatisticsOtherBranchSplit()); // other branch
Expand All @@ -274,7 +273,7 @@ private boolean isAnomaly(Instance instance, ActiveRule rule) {
// AMRUles is equipped with anomaly detection. If on, compute the anomaly
// value.
boolean isAnomaly = false;
if (this.noAnomalyDetection == false) {
if (!this.noAnomalyDetection) {
if (rule.getInstancesSeen() >= this.anomalyNumInstThreshold) {
isAnomaly = rule.isAnomaly(instance,
this.univariateAnomalyprobabilityThreshold,
Expand Down Expand Up @@ -308,19 +307,19 @@ private ActiveRule newRule(int ID, RuleActiveRegressionNode node, double[] stati
}
}
}
if (statistics != null && ((RuleActiveRegressionNode) r.getLearningNode()).getTargetMean() != null)
if (statistics != null && (r.getLearningNode()).getTargetMean() != null)
{
double mean;
if (statistics[0] > 0) {
mean = statistics[1] / statistics[0];
((RuleActiveRegressionNode) r.getLearningNode()).getTargetMean().reset(mean, (long) statistics[0]);
(r.getLearningNode()).getTargetMean().reset(mean, (long) statistics[0]);
}
}
return r;
}

private ActiveRule newRule(int ID) {
ActiveRule r = new ActiveRule.Builder().
return new ActiveRule.Builder().
threshold(this.pageHinckleyThreshold).
alpha(this.pageHinckleyAlpha).
changeDetection(this.driftDetection).
Expand All @@ -329,7 +328,6 @@ private ActiveRule newRule(int ID) {
learningRatio(this.learningRatio).
numericObserver(numericObserver).
id(ID).build();
return r;
}

/*
Expand All @@ -342,7 +340,7 @@ public void onCreate(int id) {
this.ruleNumberID = 0;
this.defaultRule = newRule(++this.ruleNumberID);

this.ruleSet = new LinkedList<ActiveRule>();
this.ruleSet = new LinkedList<>();
}

/*
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -38,8 +38,6 @@ public class ActiveRule extends LearningRule {

private static final long serialVersionUID = 1L;

private double[] statisticsOtherBranchSplit;

private Builder builder;

private RuleActiveRegressionNode learningNode;
Expand Down Expand Up @@ -89,10 +87,6 @@ public void setLearningNode(RuleRegressionNode learningNode) {
this.learningNode = (RuleActiveRegressionNode) learningNode;
}

public double[] statisticsOtherBranchSplit() {
return this.statisticsOtherBranchSplit;
}

public RuleSplitNode getLastUpdatedRuleSplitNode() {
return this.lastUpdatedRuleSplitNode;
}
Expand All @@ -104,7 +98,6 @@ public static class Builder implements Serializable {

private static final long serialVersionUID = 1712887264918475622L;
protected boolean changeDetection;
protected boolean usePerceptron;
protected double threshold;
protected double alpha;
protected int predictionFunction;
Expand All @@ -115,8 +108,6 @@ public static class Builder implements Serializable {

protected FIMTDDNumericAttributeClassLimitObserver numericObserver;

protected double lastTargetMean;

public int id;

public Builder() {
Expand Down Expand Up @@ -182,8 +173,7 @@ public ActiveRule build() {
*/
public boolean tryToExpand(double splitConfidence, double tieThreshold) {

boolean shouldSplit = this.learningNode.tryToExpand(splitConfidence, tieThreshold);
return shouldSplit;
return this.learningNode.tryToExpand(splitConfidence, tieThreshold);

}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -50,10 +50,7 @@ public class AMRLearnerProcessor implements Processor {
*/
private static final long serialVersionUID = -2302897295090248013L;

private static final Logger logger =
LoggerFactory.getLogger(AMRLearnerProcessor.class);

private int processorId;
private static final Logger logger = LoggerFactory.getLogger(AMRLearnerProcessor.class);

private transient List<ActiveRule> ruleSet;

Expand Down Expand Up @@ -105,10 +102,10 @@ private void trainRuleOnInstance(int ruleID, Instance instance) {
ActiveRule rule = ruleIterator.next();
if (rule.getRuleNumberID() == ruleID) {
// Check (again) for coverage
if (rule.isCovering(instance) == true) {
if (rule.isCovering(instance)) {
double error = rule.computeError(instance); // Use adaptive mode error
boolean changeDetected = ((RuleActiveRegressionNode) rule.getLearningNode()).updateChangeDetection(error);
if (changeDetected == true) {
if (changeDetected) {
ruleIterator.remove();

this.sendRemoveRuleEvent(ruleID);
Expand Down Expand Up @@ -137,7 +134,7 @@ private boolean isAnomaly(Instance instance, LearningRule rule) {
// AMRUles is equipped with anomaly detection. If on, compute the anomaly
// value.
boolean isAnomaly = false;
if (this.noAnomalyDetection == false) {
if (!this.noAnomalyDetection) {
if (rule.getInstancesSeen() >= this.anomalyNumInstThreshold) {
isAnomaly = rule.isAnomaly(instance,
this.univariateAnomalyprobabilityThreshold,
Expand Down Expand Up @@ -167,8 +164,7 @@ private boolean addRule(ActiveRule rule) {

@Override
public void onCreate(int id) {
this.processorId = id;
this.ruleSet = new LinkedList<ActiveRule>();
this.ruleSet = new LinkedList<>();
}

@Override
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -49,10 +49,7 @@ public class AMRulesStatisticsProcessor implements Processor {
*/
private static final long serialVersionUID = 5268933189695395573L;

private static final Logger logger =
LoggerFactory.getLogger(AMRulesStatisticsProcessor.class);

private int processorId;
private static final Logger logger = LoggerFactory.getLogger(AMRulesStatisticsProcessor.class);

private transient List<ActiveRule> ruleSet;

Expand Down Expand Up @@ -98,10 +95,10 @@ private void trainRuleOnInstance(int ruleID, Instance instance) {
if (rule.getRuleNumberID() == ruleID) {
// Check (again) for coverage
// Skip anomaly check as Aggregator's perceptron should be well-updated
if (rule.isCovering(instance) == true) {
if (rule.isCovering(instance)) {
double error = rule.computeError(instance); // Use adaptive mode error
boolean changeDetected = ((RuleActiveRegressionNode) rule.getLearningNode()).updateChangeDetection(error);
if (changeDetected == true) {
if (changeDetected) {
ruleIterator.remove();

this.sendRemoveRuleEvent(ruleID);
Expand Down Expand Up @@ -143,8 +140,7 @@ private boolean addRule(ActiveRule rule) {

@Override
public void onCreate(int id) {
this.processorId = id;
this.ruleSet = new LinkedList<ActiveRule>();
this.ruleSet = new LinkedList<>();
}

@Override
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -45,8 +45,7 @@ final public class LocalClustererProcessor implements Processor {
*
*/
private static final long serialVersionUID = -1577910988699148691L;
private static final Logger logger = LoggerFactory
.getLogger(LocalClustererProcessor.class);
private static final Logger logger = LoggerFactory.getLogger(LocalClustererProcessor.class);
private LocalClustererAdapter model;
private Stream outputStream;
private int modelId;
Expand Down Expand Up @@ -84,7 +83,7 @@ public LocalClustererAdapter getLearner() {
* Set the output streams.
*
* @param outputStream
* the new output stream {@link PredictionCombinerPE}.
* the new output stream {@link Stream}.
*/
public void setOutputStream(Stream outputStream) {

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ public void init(TopologyBuilder builder, Instances dataset, int parallelism) {

protected void setLayout() {
learnerP = new LocalClustererProcessor();
LocalClustererAdapter learner = (LocalClustererAdapter) this.learnerOption.getValue();
LocalClustererAdapter learner = this.learnerOption.getValue();
learner.setDataset(this.dataset);
learnerP.setLearner(learner);

Expand All @@ -96,7 +96,6 @@ public Processor getInputProcessor() {
*/
@Override
public Set<Stream> getResultStreams() {
Set<Stream> streams = ImmutableSet.of(this.resultStream);
return streams;
return ImmutableSet.of(this.resultStream);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,6 @@
* #L%
*/

import com.dreizak.miniball.model.ArrayPointSet;
import com.dreizak.miniball.model.PointSet;
import java.util.ArrayList;
import java.util.List;
Expand Down Expand Up @@ -62,7 +61,7 @@ public class PointStorage implements PointSet {

public PointStorage(int dimension) {
this.dimension = dimension;
this.L = new ArrayList<double[]>();
this.L = new ArrayList<>();
}

public void add(double[] array) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@
* #L%
*/

import java.util.Collections;
import java.util.LinkedList;
import java.util.List;
import java.util.Random;
Expand Down Expand Up @@ -134,21 +135,19 @@ public void trainOnInstance(Instance inst) {
}

public Measurement[] getModelMeasurements() {
List<Measurement> measurementList = new LinkedList<Measurement>();
List<Measurement> measurementList = new LinkedList<>();
measurementList.add(new Measurement("model training instances",
trainingWeightSeenByModel()));
measurementList.add(new Measurement("model serialized size (bytes)",
measureByteSize()));
Measurement[] modelMeasurements = getModelMeasurementsImpl();
if (modelMeasurements != null) {
for (Measurement measurement : modelMeasurements) {
measurementList.add(measurement);
}
Collections.addAll(measurementList, modelMeasurements);
}
// add average of sub-model measurements
Clusterer[] subModels = getSubClusterers();
if ((subModels != null) && (subModels.length > 0)) {
List<Measurement[]> subMeasurements = new LinkedList<Measurement[]>();
List<Measurement[]> subMeasurements = new LinkedList<>();
for (Clusterer subModel : subModels) {
if (subModel != null) {
subMeasurements.add(subModel.getModelMeasurements());
Expand All @@ -157,9 +156,7 @@ public Measurement[] getModelMeasurements() {
Measurement[] avgMeasurements = Measurement
.averageMeasurements(subMeasurements
.toArray(new Measurement[subMeasurements.size()][]));
for (Measurement measurement : avgMeasurements) {
measurementList.add(measurement);
}
Collections.addAll(measurementList, avgMeasurements);
}
return measurementList.toArray(new Measurement[measurementList.size()]);
}
Expand Down Expand Up @@ -295,5 +292,5 @@ public boolean keepClassLabel() {

public Clustering getMicroClusteringResult() {
return null;
};
}
}
Loading