-
Notifications
You must be signed in to change notification settings - Fork 31
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add GDN algorithm #16
base: main
Are you sure you want to change the base?
Changes from all commits
f1508be
3dc4006
91c0fb1
daf8e81
652683b
d704a3d
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,4 @@ | ||
FROM python:3.7.9-slim-buster | ||
FROM python:3.10-slim | ||
|
||
LABEL maintainer="[email protected]" | ||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
numpy==1.20.0 | ||
pandas==1.2.1 | ||
matplotlib==3.3.4 | ||
scipy==1.6.0 | ||
scikit-learn==0.24.1 | ||
numpy>=1.20.0 | ||
pandas>=1.2.1 | ||
matplotlib>=3.3.4 | ||
scipy>=1.6.0 | ||
scikit-learn>=0.24.1 | ||
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,5 +1,5 @@ | ||
FROM registry.gitlab.hpi.de/akita/i/python3-base | ||
FROM registry.gitlab.hpi.de/akita/i/python3-base:0.2.6 | ||
|
||
LABEL maintainer="[email protected]" | ||
|
||
RUN pip install --no-cache-dir torch==1.7.1 | ||
RUN pip install --no-cache-dir torch==1.13.1 |
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -42,6 +42,7 @@ The namespace prefix (repository) for the built Docker images is `registry.gitla | |
| [fft](./fft) | `registry.gitlab.hpi.de/akita/i/fft` | python 3.7 | [`registry.gitlab.hpi.de/akita/i/python3-base`](./0-base-images/python3-base) | unsupervised | univariate | | ||
| [generic_rf](./generic_rf) | `registry.gitlab.hpi.de/akita/i/generic_rf` | python 3.7 | [`registry.gitlab.hpi.de/akita/i/python3-base`](./0-base-images/python3-base) | semi-supervised | univariate | | ||
| [generic_xgb](./generic_xgb) | `registry.gitlab.hpi.de/akita/i/generic_xgb` | python 3.7 | [`registry.gitlab.hpi.de/akita/i/python3-base`](./0-base-images/python3-base) | semi-supervised | univariate | | ||
| [gdn](./gdn) | `registry.gitlab.hpi.de/akita/i/gdn` | python 3.7 | [`registry.gitlab.hpi.de/akita/i/python3-base`](./0-base-images/python3-base) | semi-supervised | multivariate | | ||
| [grammarviz3](./grammarviz3) | `registry.gitlab.hpi.de/akita/i/grammarviz3` | Java| [`registry.gitlab.hpi.de/akita/i/java-base`](./0-base-images/java-base) | unsupervised | univariate | | ||
| [grammarviz3_multi](./grammarviz3_multi) | `registry.gitlab.hpi.de/akita/i/grammarviz3_multi` | Java| [`registry.gitlab.hpi.de/akita/i/java-base`](./0-base-images/java-base) | unsupervised | multivariate | | ||
| [hbos](./hbos) | `registry.gitlab.hpi.de/akita/i/hbos` | python 3.7 | [`registry.gitlab.hpi.de/akita/i/pyod`](./0-base-images/pyod) -> [`registry.gitlab.hpi.de/akita/i/python3-base`](./0-base-images/python3-base) | unsupervised | multivariate | | ||
|
@@ -178,11 +179,9 @@ Follow the below steps to test your algorithm using Docker (examples assume that | |
docker run --rm \ | ||
-v $(pwd)/1-data:/data:ro \ | ||
-v $(pwd)/2-results:/results:rw \ | ||
# -e LOCAL_UID=<current user id> \ | ||
# -e LOCAL_GID=<current groupid> \ | ||
registry.gitlab.hpi.de/akita/i/<your_algorithm>:latest execute-algorithm '{ | ||
registry.gitlab.hpi.de/akita/i/gdn:0.2.6 execute-algorithm '{ | ||
"executionType": "train", | ||
"dataInput": "/data/dataset.csv", | ||
"dataInput": "/data/multi-dataset.csv", | ||
Comment on lines
-181
to
+184
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please revert those changes to the README. They only apply to your algorithm and not to the others. |
||
"dataOutput": "/results/anomaly_scores.ts", | ||
"modelInput": "/results/model.pkl", | ||
"modelOutput": "/results/model.pkl", | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
FROM registry.gitlab.hpi.de/akita/i/python3-torch:0.2.6 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. There is no version |
||
|
||
LABEL maintainer="[email protected]" | ||
|
||
ENV ALGORITHM_MAIN="/app/algorithm.py" | ||
|
||
# install algorithm dependencies | ||
COPY requirements.txt /app/ | ||
RUN apt-get update; \ | ||
apt-get install -y gcc g++ python3-dev; \ | ||
apt-get clean; \ | ||
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* | ||
RUN pip install -r /app/requirements.txt | ||
|
||
COPY algorithm.py /app/ | ||
COPY GDN /app/GDN | ||
# fixing six.py dataloader issue | ||
COPY GDN/dataloader_fix.py /usr/local/lib/python3.10/site-packages/torch_geometric/data/dataloader.py | ||
Comment on lines
+17
to
+18
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Do you have a link to the bug report/issue? This looks like a dirty hack. |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2021 d-ailin | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
# GDN | ||
|
||
Code implementation for : [Graph Neural Network-Based Anomaly Detection in Multivariate Time Series(AAAI'21)](https://arxiv.org/pdf/2106.06947.pdf) | ||
|
||
|
||
# Installation | ||
### Requirements | ||
* Python >= 3.6 | ||
* cuda == 10.2 | ||
* [Pytorch==1.5.1](https://pytorch.org/) | ||
* [PyG: torch-geometric==1.5.0](https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html) | ||
|
||
### Install packages | ||
``` | ||
# run after installing correct Pytorch package | ||
bash install.sh | ||
``` | ||
|
||
### Quick Start | ||
Run to check if the environment is ready | ||
``` | ||
bash run.sh cpu msl | ||
# or with gpu | ||
bash run.sh <gpu_id> msl # e.g. bash run.sh 1 msl | ||
``` | ||
|
||
|
||
# Usage | ||
We use part of msl dataset(refer to [telemanom](https://github.com/khundman/telemanom)) as demo example. | ||
|
||
## Data Preparation | ||
``` | ||
# put your dataset under data/ directory with the same structure shown in the data/msl/ | ||
|
||
data | ||
|-msl | ||
| |-list.txt # the feature names, one feature per line | ||
| |-train.csv # training data | ||
| |-test.csv # test data | ||
|-your_dataset | ||
| |-list.txt | ||
| |-train.csv | ||
| |-test.csv | ||
| ... | ||
|
||
``` | ||
|
||
### Notices: | ||
* The first column in .csv will be regarded as index column. | ||
* The column sequence in .csv don't need to match the sequence in list.txt, we will rearrange the data columns according to the sequence in list.txt. | ||
* test.csv should have a column named "attack" which contains ground truth label(0/1) of being attacked or not(0: normal, 1: attacked) | ||
|
||
## Run | ||
``` | ||
# using gpu | ||
bash run.sh <gpu_id> <dataset> | ||
|
||
# or using cpu | ||
bash run.sh cpu <dataset> | ||
``` | ||
You can change running parameters in the run.sh. | ||
|
||
# Others | ||
SWaT and WADI datasets can be requested from [iTrust](https://itrust.sutd.edu.sg/) | ||
|
||
|
||
# Citation | ||
If you find this repo or our work useful for your research, please consider citing the paper | ||
``` | ||
@inproceedings{deng2021graph, | ||
title={Graph neural network-based anomaly detection in multivariate time series}, | ||
author={Deng, Ailin and Hooi, Bryan}, | ||
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, | ||
volume={35}, | ||
number={5}, | ||
pages={4027--4035}, | ||
year={2021} | ||
} | ||
``` |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
# fixed version of original dataloader in torch_geometric/data/dataloader.py | ||
# last import guarantees overload of original version | ||
import torch.utils.data | ||
from torch.utils.data.dataloader import default_collate | ||
|
||
from torch_geometric.data import Data, Batch | ||
from torch._six import string_classes | ||
|
||
|
||
int_classes = (bool, int) | ||
|
||
# NOTE: This overrides the default dataloader from torch_geometric to fix an issue | ||
class Collater(object): | ||
def __init__(self, follow_batch): | ||
self.follow_batch = follow_batch | ||
|
||
def collate(self, batch): | ||
elem = batch[0] | ||
if isinstance(elem, Data): | ||
return Batch.from_data_list(batch, self.follow_batch) | ||
elif isinstance(elem, torch.Tensor): | ||
return default_collate(batch) | ||
elif isinstance(elem, float): | ||
return torch.tensor(batch, dtype=torch.float) | ||
elif isinstance(elem, int_classes): | ||
return torch.tensor(batch) | ||
elif isinstance(elem, string_classes): | ||
return batch | ||
elif isinstance(elem, container_abcs.Mapping): | ||
return {key: self.collate([d[key] for d in batch]) for key in elem} | ||
elif isinstance(elem, tuple) and hasattr(elem, '_fields'): | ||
return type(elem)(*(self.collate(s) for s in zip(*batch))) | ||
elif isinstance(elem, container_abcs.Sequence): | ||
return [self.collate(s) for s in zip(*batch)] | ||
|
||
raise TypeError('DataLoader found invalid type: {}'.format(type(elem))) | ||
|
||
def __call__(self, batch): | ||
return self.collate(batch) | ||
|
||
|
||
class DataLoader(torch.utils.data.DataLoader): | ||
r"""Data loader which merges data objects from a | ||
:class:`torch_geometric.data.dataset` to a mini-batch. | ||
|
||
Args: | ||
dataset (Dataset): The dataset from which to load the data. | ||
batch_size (int, optional): How many samples per batch to load. | ||
(default: :obj:`1`) | ||
shuffle (bool, optional): If set to :obj:`True`, the data will be | ||
reshuffled at every epoch. (default: :obj:`False`) | ||
follow_batch (list or tuple, optional): Creates assignment batch | ||
vectors for each key in the list. (default: :obj:`[]`) | ||
""" | ||
|
||
def __init__(self, dataset, batch_size=1, shuffle=False, follow_batch=[], | ||
**kwargs): | ||
super(DataLoader, | ||
self).__init__(dataset, batch_size, shuffle, | ||
collate_fn=Collater(follow_batch), **kwargs) | ||
|
||
|
||
class DataListLoader(torch.utils.data.DataLoader): | ||
r"""Data loader which merges data objects from a | ||
:class:`torch_geometric.data.dataset` to a python list. | ||
|
||
.. note:: | ||
|
||
This data loader should be used for multi-gpu support via | ||
:class:`torch_geometric.nn.DataParallel`. | ||
|
||
Args: | ||
dataset (Dataset): The dataset from which to load the data. | ||
batch_size (int, optional): How many samples per batch to load. | ||
(default: :obj:`1`) | ||
shuffle (bool, optional): If set to :obj:`True`, the data will be | ||
reshuffled at every epoch (default: :obj:`False`) | ||
""" | ||
|
||
def __init__(self, dataset, batch_size=1, shuffle=False, **kwargs): | ||
super(DataListLoader, self).__init__( | ||
dataset, batch_size, shuffle, | ||
collate_fn=lambda data_list: data_list, **kwargs) | ||
|
||
|
||
class DenseCollater(object): | ||
def collate(self, data_list): | ||
batch = Batch() | ||
for key in data_list[0].keys: | ||
batch[key] = default_collate([d[key] for d in data_list]) | ||
return batch | ||
|
||
def __call__(self, batch): | ||
return self.collate(batch) | ||
|
||
|
||
class DenseDataLoader(torch.utils.data.DataLoader): | ||
r"""Data loader which merges data objects from a | ||
:class:`torch_geometric.data.dataset` to a mini-batch. | ||
|
||
.. note:: | ||
|
||
To make use of this data loader, all graphs in the dataset needs to | ||
have the same shape for each its attributes. | ||
Therefore, this data loader should only be used when working with | ||
*dense* adjacency matrices. | ||
|
||
Args: | ||
dataset (Dataset): The dataset from which to load the data. | ||
batch_size (int, optional): How many samples per batch to load. | ||
(default: :obj:`1`) | ||
shuffle (bool, optional): If set to :obj:`True`, the data will be | ||
reshuffled at every epoch (default: :obj:`False`) | ||
""" | ||
|
||
def __init__(self, dataset, batch_size=1, shuffle=False, **kwargs): | ||
super(DenseDataLoader, self).__init__( | ||
dataset, batch_size, shuffle, collate_fn=DenseCollater(), **kwargs) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
import torch | ||
from torch.utils.data import Dataset, DataLoader | ||
|
||
import torch.nn.functional as F | ||
from sklearn.preprocessing import MinMaxScaler, StandardScaler | ||
import numpy as np | ||
|
||
|
||
class TimeDataset(Dataset): | ||
def __init__(self, raw_data, edge_index, mode='train', config = None): | ||
self.raw_data = raw_data | ||
|
||
self.config = config | ||
self.edge_index = edge_index | ||
self.mode = mode | ||
|
||
x_data = raw_data[:-1] | ||
labels = raw_data[-1] | ||
|
||
|
||
data = x_data | ||
|
||
# to tensor | ||
data = torch.tensor(data).double() | ||
labels = torch.tensor(labels).double() | ||
|
||
self.x, self.y, self.labels = self.process(data, labels) | ||
|
||
def __len__(self): | ||
return len(self.x) | ||
|
||
|
||
def process(self, data, labels): | ||
x_arr, y_arr = [], [] | ||
labels_arr = [] | ||
|
||
slide_win, slide_stride = [self.config[k] for k | ||
in ['slide_win', 'slide_stride'] | ||
] | ||
is_train = self.mode == 'train' | ||
|
||
node_num, total_time_len = data.shape | ||
|
||
rang = range(slide_win, total_time_len, slide_stride) if is_train else range(slide_win, total_time_len) | ||
|
||
for i in rang: | ||
|
||
ft = data[:, i-slide_win:i] | ||
tar = data[:, i] | ||
|
||
x_arr.append(ft) | ||
y_arr.append(tar) | ||
|
||
labels_arr.append(labels[i]) | ||
|
||
|
||
x = torch.stack(x_arr).contiguous() | ||
y = torch.stack(y_arr).contiguous() | ||
|
||
labels = torch.Tensor(labels_arr).contiguous() | ||
|
||
return x, y, labels | ||
|
||
def __getitem__(self, idx): | ||
|
||
feature = self.x[idx].double() | ||
y = self.y[idx].double() | ||
|
||
edge_index = self.edge_index.long() | ||
|
||
label = self.labels[idx].double() | ||
|
||
return feature, y, label, edge_index | ||
|
||
|
||
|
||
|
||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We deliberately pinned the dependencies to ensure reproducibility!
If the new algorithm actually needs a new Python version and different dependencies, we should create a new base image. Otherwise, we have to check if all the other algorithms still work with the new base image.