Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/main' into multiprocess-fitting-…
Browse files Browse the repository at this point in the history
…script
  • Loading branch information
etpeterson committed Oct 18, 2024
2 parents 575850a + 6c8a829 commit 71924b2
Show file tree
Hide file tree
Showing 6 changed files with 148 additions and 106 deletions.
8 changes: 8 additions & 0 deletions .github/workflows/website.yml
Original file line number Diff line number Diff line change
Expand Up @@ -46,12 +46,20 @@ jobs:
with:
name: 'Data'

- name: Run the test that generates the plots report.
run: |
pytest tests/IVIMmodels/unit_tests/test_ivim_fit.py --json-report
mv .report.json utilities/
python utilities/report-summary.py .report.json report-summary.json
- name: 'Filter and compress results file.'
run: python utilities/reduce_output_size.py test_output.csv test_output.csv.gz

- name: move data to the dashboard folder
run: |
mv test_output.csv.gz website/dashboard
mv report-summary.json website/dashboard
- name: Build documentation
run: |
Expand Down
1 change: 1 addition & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -13,3 +13,4 @@ tqdm
pandas
sphinx
sphinx_rtd_theme
pytest-json-report
127 changes: 21 additions & 106 deletions tests/IVIMmodels/unit_tests/test_ivim_fit.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,115 +3,11 @@
import pytest
import json
import pathlib
import os

from src.wrappers.OsipiBase import OsipiBase
from utilities.data_simulation.GenerateData import GenerateData

#run using python -m pytest from the root folder


# @pytest.fixture
# def algorithm_fixture()
# def test_fixtures()

# use a fixture to generate data
# either read a config file for the test or perhaps hard code a few fixtures and usefixtures in the config?
# use a fixture to save data

# def algorithm_list():
# # Find the algorithms from algorithms.json
# file = pathlib.Path(__file__)
# algorithm_path = file.with_name('algorithms.json')
# with algorithm_path.open() as f:
# algorithm_information = json.load(f)
# return algorithm_information["algorithms"]

# @pytest.fixture(params=algorithm_list())
# def algorithm_fixture(request):
# # assert request.param == "algorithms"
# yield request.param



# @pytest.fixture(params=SNR)
# def noise_fixture(request):
# return request.config.getoption("--noise")

# @pytest.fixture
# def noise_fixture(request):
# yield request.param

# @pytest.mark.parametrize("S", [SNR])
# @pytest.mark.parametrize("D, Dp, f, bvals", [[0.0015, 0.1, 0.11000000000000007,[0, 5, 10, 50, 100, 200, 300, 500, 1000]]])
# def test_generated(ivim_algorithm, ivim_data, SNR):
# S0 = 1
# gd = GenerateData()
# name, bvals, data = ivim_data
# D = data["D"]
# f = data["f"]
# Dp = data["Dp"]
# if "data" not in data:
# signal = gd.ivim_signal(D, Dp, f, S0, bvals, SNR)
# else:
# signal = data["data"]
# fit = OsipiBase(algorithm=ivim_algorithm)
# [f_fit, Dp_fit, D_fit] = fit.osipi_fit(signal, bvals)
# npt.assert_allclose([f, D, Dp], [f_fit, D_fit, Dp_fit])



# test_linear_data = [
# pytest.param(0, np.linspace(0, 1000, 11), id='0'),
# pytest.param(0.01, np.linspace(0, 1000, 11), id='0.1'),
# pytest.param(0.02, np.linspace(0, 1000, 11), id='0.2'),
# pytest.param(0.03, np.linspace(0, 1000, 11), id='0.3'),
# pytest.param(0.04, np.linspace(0, 1000, 11), id='0.4'),
# pytest.param(0.05, np.linspace(0, 1000, 11), id='0.5'),
# pytest.param(0.08, np.linspace(0, 1000, 11), id='0.8'),
# pytest.param(0.1, np.linspace(0, 1000, 11), id='1'),
# ]

#@pytest.mark.parametrize("D, bvals", test_linear_data)
#def test_linear_fit(D, bvals):
#gd = GenerateData()
#gd_signal = gd.exponential_signal(D, bvals)
#print(gd_signal)
#fit = LinearFit()
#D_fit = fit.linear_fit(bvals, np.log(gd_signal))
#npt.assert_allclose([1, D], D_fit)

# test_ivim_data = [
# pytest.param(0, 0.01, 0.05, np.linspace(0, 1000, 11), id='0'),
# pytest.param(0.1, 0.01, 0.05, np.linspace(0, 1000, 11), id='0.1'),
# pytest.param(0.2, 0.01, 0.05, np.linspace(0, 1000, 11), id='0.2'),
# pytest.param(0.1, 0.05, 0.1, np.linspace(0, 1000, 11), id='0.3'),
# pytest.param(0.4, 0.001, 0.05, np.linspace(0, 1000, 11), id='0.4'),
# pytest.param(0.5, 0.001, 0.05, np.linspace(0, 1000, 11), id='0.5'),
# ]

#@pytest.mark.parametrize("f, D, Dp, bvals", test_ivim_data)
#def test_ivim_fit(f, D, Dp, bvals):
## We should make a wrapper that runs this for a range of different settings, such as b thresholds, bounds, etc.
## An additional inputs to these functions could perhaps be a "settings" class with attributes that are the settings to the
## algorithms. I.e. bvalues, thresholds, bounds, initial guesses.
## That way, we can write something that defines a range of settings, and then just run them through here.

#gd = GenerateData()
#gd_signal = gd.ivim_signal(D, Dp, f, 1, bvals)

##fit = LinearFit() # This is the old code by ETP
#fit = ETP_SRI_LinearFitting() # This is the standardized format by IAR, which every algorithm will be implemented with

#[f_fit, Dp_fit, D_fit] = fit.ivim_fit(gd_signal, bvals) # Note that I have transposed Dp and D. We should decide on a standard order for these. I usually go with f, Dp, and D ordered after size.
#npt.assert_allclose([f, D], [f_fit, D_fit], atol=1e-5)
#if not np.allclose(f, 0):
#npt.assert_allclose(Dp, Dp_fit, rtol=1e-2, atol=1e-3)


# convert the algorithm list and signal list to fixtures that read from the files into params (scope="session")
# from that helpers can again parse the files?

def signal_helper(signal):
signal = np.asarray(signal)
signal = np.abs(signal)
Expand Down Expand Up @@ -160,17 +56,36 @@ def data_ivim_fit_saved():


@pytest.mark.parametrize("name, bvals, data, algorithm, xfail, kwargs, tolerances", data_ivim_fit_saved())
def test_ivim_fit_saved(name, bvals, data, algorithm, xfail, kwargs, tolerances, request):
def test_ivim_fit_saved(name, bvals, data, algorithm, xfail, kwargs, tolerances, request, record_property):
if xfail["xfail"]:
mark = pytest.mark.xfail(reason="xfail", strict=xfail["strict"])
request.node.add_marker(mark)
fit = OsipiBase(algorithm=algorithm, **kwargs)
signal, ratio = signal_helper(data["data"])

tolerances = tolerances_helper(tolerances, ratio, data["noise"])
[f_fit, Dp_fit, D_fit] = fit.osipi_fit(signal, bvals)
def to_list_if_needed(value):
return value.tolist() if isinstance(value, np.ndarray) else value
test_result = {
"name": name,
"algorithm": algorithm,
"f_fit": to_list_if_needed(f_fit),
"Dp_fit": to_list_if_needed(Dp_fit),
"D_fit": to_list_if_needed(D_fit),
"f": to_list_if_needed(data['f']),
"Dp": to_list_if_needed(data['Dp']),
"D": to_list_if_needed(data['D']),
"rtol": tolerances["rtol"],
"atol": tolerances["atol"]
}


record_property('test_data', test_result)

npt.assert_allclose(data['f'], f_fit, rtol=tolerances["rtol"]["f"], atol=tolerances["atol"]["f"])

if data['f']<0.80: # we need some signal for D to be detected
npt.assert_allclose(data['D'], D_fit, rtol=tolerances["rtol"]["D"], atol=tolerances["atol"]["D"])
if data['f']>0.03: #we need some f for D* to be interpretable
npt.assert_allclose(data['Dp'], Dp_fit, rtol=tolerances["rtol"]["Dp"], atol=tolerances["atol"]["Dp"])

26 changes: 26 additions & 0 deletions utilities/report-summary.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
import pathlib
import json
import sys

def summarize_test_report(input_file:str, output_file:str):
file = pathlib.Path(__file__)
report_path = file.with_name(input_file)
with report_path.open() as f:
report_info = json.load(f)
summary = []
for test_case in report_info['tests']:
values = test_case['user_properties'][0]['test_data']
values['status'] = test_case['outcome']
summary.append(values)

with open(output_file, 'w') as f:
json.dump(summary, f, indent=4)

if __name__ == '__main__':
if len(sys.argv) != 3:
print("Usage: python report-summary.py <input_file> <output_file>")
sys.exit(1)

input_file = sys.argv[1]
output_file = sys.argv[2]
summarize_test_report(input_file, output_file)
7 changes: 7 additions & 0 deletions website/dashboard/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
<script src="https://cdnjs.cloudflare.com/ajax/libs/PapaParse/5.3.0/papaparse.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/pako.min.js"></script>
<script src="index.js"></script>
<script src="test_plots.js"></script>
<link rel="stylesheet" href="index.css">
</head>
<body>
Expand Down Expand Up @@ -97,6 +98,12 @@ <h1 class="bar-title">IVIM MRI Algorithm Fitting Dashboard</h1>
<div class="chart-card" id="regionDiv">
<!-- New chart will be rendered here -->
</div>
<h1>Validation Data Plots</h1>
<div style="display: flex; flex-direction: column; gap: 1rem;">
<div class="chart-card" id="plot_f_fit" "></div>
<div class="chart-card" id="plot_Dp_fit" "></div>
<div class="chart-card" id="plot_D_fit" "></div>
</div>


</main>
Expand Down
85 changes: 85 additions & 0 deletions website/dashboard/test_plots.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
document.addEventListener('DOMContentLoaded', function() {
fetch('report-summary.json')
.then(response => response.json())
.then(data => {
function createPlot(container, parameter) {
var reference_values = data.map(d => d[parameter]);
var fit_values = data.map(d => d[parameter + '_fit']);
var minRefValue = Math.min(...reference_values);
var maxRefValue = Math.max(...reference_values);
// Create a range for tolerance trace x axis.
var xRange = [minRefValue, maxRefValue];
// var DefaultTolerance = {
// "rtol": {
// "f": 0.05,
// "D": 2,
// "Dp": 0.5
// },
// "atol": {
// "f": 0.2,
// "D": 0.001,
// "Dp": 0.06
// }
// }
var DefaultTolerance = data[1] //Majority of the dataset has this tolerance values
var tolerance = xRange.map((d) => DefaultTolerance['atol'][parameter] + DefaultTolerance['rtol'][parameter] * d);
var negative_tolerance = tolerance.map(t => -t);

var errors = fit_values.map((d, i) => (d - reference_values[i]));

// Define colors for each status
var statusColors = {
'passed': 'green',
'xfailed': 'blue',
'failed': 'red'
};

// Assign color based on the status
var marker_colors = data.map(entry => statusColors[entry.status]);

var scatter_trace = {
x: reference_values,
y: errors,
mode: 'markers',
type: 'scatter',
name: `${parameter} fitting values`,
text: data.map(entry => `Algorithm: ${entry.algorithm} Region: ${entry.name}`),
marker: {
color: marker_colors
}
};

var tolerance_trace = {
x: xRange,
y: tolerance,
type: 'scatter',
mode: 'lines',
line: { dash: 'dash', color: 'black' },
name: 'Positive Tolerance'
};

var negative_tolerance_trace = {
x: xRange,
y: negative_tolerance,
type: 'scatter',
mode: 'lines',
line: { dash: 'dash', color: 'black' },
name: 'Negative Tolerance'
};

var layout = {
title: `Error Plot for ${parameter.toUpperCase()}_fit with Tolerance Bands`,
xaxis: { title: `Reference ${parameter.toUpperCase()} Values` },
yaxis: { title: `Error (${parameter}_fit - Reference ${parameter})` }
};

var plot_data = [scatter_trace, tolerance_trace, negative_tolerance_trace];

Plotly.newPlot(container, plot_data, layout);
}

createPlot('plot_f_fit', 'f');
createPlot('plot_Dp_fit', 'Dp');
createPlot('plot_D_fit', 'D');
});
});

0 comments on commit 71924b2

Please sign in to comment.