-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into multiprocess-fitting-script
- Loading branch information
Showing
19 changed files
with
5,808 additions
and
3,501 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1,107 changes: 1,107 additions & 0 deletions
1,107
doc/Introduction_to_TF24_IVIM-MRI_CodeCollection_github_and_IVIM_Analysis_using_Python.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -11,7 +11,7 @@ | |
# code adapted from MAtlab code by Eric Schrauben: https://github.com/schrau24/XCAT-ERIC | ||
# This code generates a 4D IVIM phantom as nifti file | ||
|
||
def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleaved=False): | ||
def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleaved=False,T1T2=True): | ||
np.random.seed(42) | ||
if motion: | ||
states = range(1,21) | ||
|
@@ -23,10 +23,10 @@ def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleav | |
|
||
# Access the variables in the loaded .mat file | ||
XCAT = mat_data['IMG'] | ||
XCAT = XCAT[0:-1:2,0:-1:2,10:160:4] | ||
XCAT = XCAT[-1:0:-2,-1:0:-2,10:160:4] | ||
|
||
D, f, Ds = contrast_curve_calc() | ||
S, Dim, fim, Dpim, legend = XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds) | ||
S, Dim, fim, Dpim, legend = XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds,T1T2=T1T2) | ||
if state == 1: | ||
Dim_out = Dim | ||
fim_out = fim | ||
|
@@ -95,15 +95,19 @@ def contrast_curve_calc(): | |
D[8] = 3e-3 # 8 Blood ra | ||
D[10] = 1.37e-3 # 8 Muscle: 10.3389/fresc.2022.910068 | ||
D[13] = 1.5e-3 # 13 liver: Delattre et al. doi: 10.1097/RLI.0b013e31826ef901 | ||
D[14] = 3.0e-3 # 13 Galbladder | ||
D[17] = 1.67e-3 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421 | ||
D[18] = 1.67e-3 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421 | ||
D[20] = 1.5e-3 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586 | ||
D[21] = 3.0e-3 # 21 stomach content | ||
D[22] = 1.3e-3 # 22 Pancreas (from literature) | ||
D[23] = 2.12e-3 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
D[24] = 2.09e-3 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
D[25] = 2.12e-3 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
D[26] = 2.09e-3 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
D[30] = 1.3e-3 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495 | ||
D[34] = 4.1e-4 # 34 spinal cord :doi: 10.3389/fonc.2022.961473 | ||
D[35] = 0.43e-3 # 35 Bone marrow : https://pubmed.ncbi.nlm.nih.gov/30194746/ | ||
D[36] = 3e-3 # 36 artery | ||
D[37] = 3e-3 # 37 vein | ||
D[40] = 1.31e-3 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926 | ||
|
@@ -124,15 +128,19 @@ def contrast_curve_calc(): | |
f[8] = 1.00 # 8 Blood ra | ||
f[10] = 0.10 # 8 Muscle: 10.3389/fresc.2022.910068 | ||
f[13] = 0.11 # 13 liver : Delattre et al. doi: 10.1097/RLI.0b013e31826ef901 | ||
f[14] = 0 # 13 Gal | ||
f[17] = 0.32 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421 | ||
f[18] = 0.32 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421 | ||
f[20] = 0.3 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586 | ||
f[21] = 0.0 # 20 stomach content | ||
f[22] = 0.15 # 22 Pancreas (from literature) | ||
f[23] = 0.097 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
f[24] = 0.158 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
f[25] = 0.097 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
f[26] = 0.158 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
f[30] = 0.2 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495 | ||
f[34] = 0.178 # 34 spinal cord :doi: 10.3389/fonc.2022.961473 | ||
f[35] = 0.145 # 35 Bone marrow : https://pubmed.ncbi.nlm.nih.gov/30194746/ | ||
f[36] = 1.0 # 36 artery | ||
f[37] = 1.0 # 37 vein | ||
f[40] = 0.69 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926 | ||
|
@@ -153,15 +161,19 @@ def contrast_curve_calc(): | |
Ds[8] = 0.1 # 8 Blood ra | ||
Ds[10] = 0.0263 # 8 Muscle: 10.3389/fresc.2022.910068 | ||
Ds[13] = 0.1 # 13 liver: Delattre et al. doi: 10.1097/RLI.0b013e31826ef901 | ||
Ds[14] = 0.1 # 14 Gal | ||
Ds[17] = 0.03 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421 | ||
Ds[18] = 0.03 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421 | ||
Ds[20] = 0.012 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586 | ||
Ds[21] = 0.0 # 20 stomach content | ||
Ds[22] = 0.01 # 22 Pancreas (from literature) | ||
Ds[23] = 0.02 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
Ds[24] = 0.019 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
Ds[25] = 0.02 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519 | ||
Ds[26] = 0.019 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519 | ||
Ds[30] = 0.03 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495 | ||
Ds[34] = 0.0289 # 34 spinal cord :doi: 10.3389/fonc.2022.961473 | ||
Ds[35] = 0.05 # 35 Bone marrow : | ||
Ds[36] = 0.1 # 36 artery | ||
Ds[37] = 0.1 # 37 vein | ||
Ds[40] = 0.029 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926 | ||
|
@@ -175,7 +187,7 @@ def contrast_curve_calc(): | |
return D, f, Ds | ||
|
||
|
||
def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True): | ||
def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True, T1T2=True): | ||
########################################################################################### | ||
# This script converts XCAT tissue values to MR contrast based on the SSFP signal equation. | ||
# Christopher W. Roy 2018-12-04 # [email protected] | ||
|
@@ -285,7 +297,7 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True): | |
Tissue[19] = [1045.5, 37.3, 1201, 44] | ||
Tissue[20] = [981.5, 36, 1232.9, 37.20] | ||
#Tissue[20] = [981.5, 36, 1232.9, 37.20] | ||
Tissue[21] = [0, 0, 0, 0] | ||
Tissue[21] = [2500, 1250, 4000, 2000] | ||
Tissue[22] = [584, 46, 725, 43] | ||
Tissue[23] = [828, 71, 1168, 66] | ||
Tissue[24] = [1412, 85, 1545, 81] | ||
|
@@ -351,7 +363,6 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True): | |
else: | ||
T1 = Tissue[iTissue, 2] | ||
T2 = Tissue[iTissue, 3] | ||
|
||
if ivim_cont and not np.isnan([D[iTissue], f[iTissue], Ds[iTissue]]).any(): | ||
# note we are assuming blood fraction has the same T1 as tissue fraction here for simplicity. Can be changed in future. | ||
Dtemp=D[iTissue] | ||
|
@@ -362,8 +373,11 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True): | |
ftemp=np.random.rand(1)*0.5 | ||
Dstemp=5e-3+np.random.rand(1)*1e-1 | ||
S0 = ivim(bvalue,Dtemp,ftemp,Dstemp) | ||
if T1 > 0 or T2 > 0: | ||
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0 * (1 - 2 * np.exp(-(TR - TE / 2) / T1) + np.exp(-TR / T1)) * np.exp(-TE / T2) | ||
if T1T2: | ||
if T1 > 0 or T2 > 0: | ||
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0 * (1 - 2 * np.exp(-(TR - TE / 2) / T1) + np.exp(-TR / T1)) * np.exp(-TE / T2) | ||
else: | ||
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0 | ||
Dim = Dim + (XCAT == iTissue) * Dtemp | ||
fim = fim + (XCAT == iTissue) * ftemp | ||
Dpim = Dpim + (XCAT == iTissue) * Dstemp | ||
|
@@ -403,6 +417,7 @@ def parse_bvalues_file(file_path): | |
parser.add_argument("-n", "--noise", type=float, default=0.0005, help="Noise") | ||
parser.add_argument("-m", "--motion", action="store_true", help="Motion flag") | ||
parser.add_argument("-i", "--interleaved", action="store_true", help="Interleaved flag") | ||
parser.add_argument("-u", "--T1T2", action="store_true", help="weight signal with T1T2") # note, set this to zero when generating test data for unit testing! | ||
args = parser.parse_args() | ||
|
||
if args.bvalues_file and args.bvalue: | ||
|
@@ -420,14 +435,15 @@ def parse_bvalues_file(file_path): | |
noise = args.noise | ||
motion = args.motion | ||
interleaved = args.interleaved | ||
T1T2 = args.T1T2 | ||
download_data() | ||
for key, bvalue in bvalues.items(): | ||
bvalue = np.array(bvalue) | ||
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved) | ||
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved,T1T2=T1T2) | ||
# sig = np.flip(sig,axis=0) | ||
# sig = np.flip(sig,axis=1) | ||
res=np.eye(4) | ||
res[2]=2 | ||
res[2,2]=2 | ||
|
||
voxel_selector_fraction = 0.5 | ||
D, f, Ds = contrast_curve_calc() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.