Skip to content

Commit

Permalink
Merge branch 'main' into multiprocess-fitting-script
Browse files Browse the repository at this point in the history
  • Loading branch information
etpeterson committed Sep 4, 2024
2 parents bb76748 + afbbe6c commit 575850a
Show file tree
Hide file tree
Showing 19 changed files with 5,808 additions and 3,501 deletions.
5 changes: 4 additions & 1 deletion .github/workflows/website.yml
Original file line number Diff line number Diff line change
Expand Up @@ -46,9 +46,12 @@ jobs:
with:
name: 'Data'

- name: 'Filter and compress results file.'
run: python utilities/reduce_output_size.py test_output.csv test_output.csv.gz

- name: move data to the dashboard folder
run: |
mv test_output.csv website/dashboard
mv test_output.csv.gz website/dashboard
- name: Build documentation
run: |
Expand Down
6 changes: 5 additions & 1 deletion .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,8 @@ __pycache__/
*.raw
bvals.txt
download
.Introduction_to_TF24_IVIM-MRI_CodeCollection_github_and_IVIM_Analysis_using_Python.ipynb
.ipynb_checkpoints
md5sums.txt
*.gz
*.zip
Expand All @@ -21,4 +23,6 @@ md5sums.txt
.cache
nosetests.xml
coverage.xml
*.pyc
*.pyc
phantoms/MR_XCAT_qMRI/*.json
phantoms/MR_XCAT_qMRI/*.txt
7 changes: 6 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ The ISMRM Open Science Initiative for Perfusion Imaging (OSIPI) is an initiative
This **IVIM code collection** code library is maintained by OSIPI [Taskforce 2.4](https://www.osipi.org/task-force-2-4/) (*currently not available*) and aims to collect, test and share open-source code related to intravoxel incoherent motion (IVIM) analysis of diffusion encoded MRI data to be used in research and software development. Code contributions can include any code related IVIM analysis (denoising, motion correction, model fitting, etc.), but at an initial phase, development of tests and other features of the repository will predominantly focus on fitting algorithms. A goal of the IVIM OSIPI task force is to develop a fully tested and harmonized code library, building upon the contributions obtained through this initiative. Documentation and analysis are available on the [OSIPI TF2.4](https://osipi.github.io/TF2.4_IVIM-MRI_CodeCollection/).

We have some useful tools and further documentation on https://osipi.github.io/TF2.4_IVIM-MRI_CodeCollection/.

## How to contribute

If you would like to get involve in OSIPI and work within the task force, please email the contacts listed on our website.
Expand All @@ -17,6 +19,9 @@ If you would like to contribute with code, please follow the instructions below:
* [Guidelines for IVIM code contribution](doc/guidelines_for_contributions.md)
* [Guidelines to creating a test file](doc/creating_test.md)

If you would like to use code from the repository and/or are new to Github or IVIM, please see the jupyter notebook below:
* [Introduction to TF2.4_IVIM-MRI_CodeCollection github and IVIM Analysis using Python](doc/Introduction_to_TF24_IVIM-MRI_CodeCollection_github_and_IVIM_Analysis_using_Python.ipynb)

## Repository Organization

The repository is organized in four main folders along with configuration files for automated testing.
Expand All @@ -32,4 +37,4 @@ The **utils** folder contains various helpful tools.
## View Testing Reports
[![Unit tests](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/unit_test.yml/badge.svg?branch=main)](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/unit_test.yml)
[![Algorithm Analysis](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/analysis.yml/badge.svg?branch=main)](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/analysis.yml)
[![Build & Deploy Documentation](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/documentation.yml/badge.svg?branch=main)](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/documentation.yml)
[![Build & Deploy Website](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/website.yml/badge.svg?branch=main)](https://github.com/OSIPI/TF2.4_IVIM-MRI_CodeCollection/actions/workflows/website.yml)

Large diffs are not rendered by default.

36 changes: 26 additions & 10 deletions phantoms/MR_XCAT_qMRI/sim_ivim_sig.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@
# code adapted from MAtlab code by Eric Schrauben: https://github.com/schrau24/XCAT-ERIC
# This code generates a 4D IVIM phantom as nifti file

def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleaved=False):
def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleaved=False,T1T2=True):
np.random.seed(42)
if motion:
states = range(1,21)
Expand All @@ -23,10 +23,10 @@ def phantom(bvalue, noise, TR=3000, TE=40, motion=False, rician=False, interleav

# Access the variables in the loaded .mat file
XCAT = mat_data['IMG']
XCAT = XCAT[0:-1:2,0:-1:2,10:160:4]
XCAT = XCAT[-1:0:-2,-1:0:-2,10:160:4]

D, f, Ds = contrast_curve_calc()
S, Dim, fim, Dpim, legend = XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds)
S, Dim, fim, Dpim, legend = XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds,T1T2=T1T2)
if state == 1:
Dim_out = Dim
fim_out = fim
Expand Down Expand Up @@ -95,15 +95,19 @@ def contrast_curve_calc():
D[8] = 3e-3 # 8 Blood ra
D[10] = 1.37e-3 # 8 Muscle: 10.3389/fresc.2022.910068
D[13] = 1.5e-3 # 13 liver: Delattre et al. doi: 10.1097/RLI.0b013e31826ef901
D[14] = 3.0e-3 # 13 Galbladder
D[17] = 1.67e-3 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421
D[18] = 1.67e-3 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421
D[20] = 1.5e-3 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586
D[21] = 3.0e-3 # 21 stomach content
D[22] = 1.3e-3 # 22 Pancreas (from literature)
D[23] = 2.12e-3 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519
D[24] = 2.09e-3 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519
D[25] = 2.12e-3 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519
D[26] = 2.09e-3 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519
D[30] = 1.3e-3 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495
D[34] = 4.1e-4 # 34 spinal cord :doi: 10.3389/fonc.2022.961473
D[35] = 0.43e-3 # 35 Bone marrow : https://pubmed.ncbi.nlm.nih.gov/30194746/
D[36] = 3e-3 # 36 artery
D[37] = 3e-3 # 37 vein
D[40] = 1.31e-3 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926
Expand All @@ -124,15 +128,19 @@ def contrast_curve_calc():
f[8] = 1.00 # 8 Blood ra
f[10] = 0.10 # 8 Muscle: 10.3389/fresc.2022.910068
f[13] = 0.11 # 13 liver : Delattre et al. doi: 10.1097/RLI.0b013e31826ef901
f[14] = 0 # 13 Gal
f[17] = 0.32 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421
f[18] = 0.32 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421
f[20] = 0.3 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586
f[21] = 0.0 # 20 stomach content
f[22] = 0.15 # 22 Pancreas (from literature)
f[23] = 0.097 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519
f[24] = 0.158 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519
f[25] = 0.097 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519
f[26] = 0.158 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519
f[30] = 0.2 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495
f[34] = 0.178 # 34 spinal cord :doi: 10.3389/fonc.2022.961473
f[35] = 0.145 # 35 Bone marrow : https://pubmed.ncbi.nlm.nih.gov/30194746/
f[36] = 1.0 # 36 artery
f[37] = 1.0 # 37 vein
f[40] = 0.69 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926
Expand All @@ -153,15 +161,19 @@ def contrast_curve_calc():
Ds[8] = 0.1 # 8 Blood ra
Ds[10] = 0.0263 # 8 Muscle: 10.3389/fresc.2022.910068
Ds[13] = 0.1 # 13 liver: Delattre et al. doi: 10.1097/RLI.0b013e31826ef901
Ds[14] = 0.1 # 14 Gal
Ds[17] = 0.03 # 17 esophagus : Huang et al. doi: 10.1259/bjr.20170421
Ds[18] = 0.03 # 18 esophagus cont : Huang et al. doi: 10.1259/bjr.20170421
Ds[20] = 0.012 # 20 stomach wall: Li et al. doi: 10.3389/fonc.2022.821586
Ds[21] = 0.0 # 20 stomach content
Ds[22] = 0.01 # 22 Pancreas (from literature)
Ds[23] = 0.02 # 23 right kydney cortex : van Baalen et al. Doi: jmri.25519
Ds[24] = 0.019 # 23 right kydney medulla : van Baalen et al. Doi: jmri.25519
Ds[25] = 0.02 # 23 left kydney cortex : van Baalen et al. Doi: jmri.25519
Ds[26] = 0.019 # 23 left kydney medulla : van Baalen et al. Doi: jmri.25519
Ds[30] = 0.03 # 30 spleen : Taimouri et al. Doi: 10.1118/1.4915495
Ds[34] = 0.0289 # 34 spinal cord :doi: 10.3389/fonc.2022.961473
Ds[35] = 0.05 # 35 Bone marrow :
Ds[36] = 0.1 # 36 artery
Ds[37] = 0.1 # 37 vein
Ds[40] = 0.029 # 40 asc lower intestine : Hai-Jing et al. doi: 10.1097/RCT.0000000000000926
Expand All @@ -175,7 +187,7 @@ def contrast_curve_calc():
return D, f, Ds


def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True):
def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True, T1T2=True):
###########################################################################################
# This script converts XCAT tissue values to MR contrast based on the SSFP signal equation.
# Christopher W. Roy 2018-12-04 # [email protected]
Expand Down Expand Up @@ -285,7 +297,7 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True):
Tissue[19] = [1045.5, 37.3, 1201, 44]
Tissue[20] = [981.5, 36, 1232.9, 37.20]
#Tissue[20] = [981.5, 36, 1232.9, 37.20]
Tissue[21] = [0, 0, 0, 0]
Tissue[21] = [2500, 1250, 4000, 2000]
Tissue[22] = [584, 46, 725, 43]
Tissue[23] = [828, 71, 1168, 66]
Tissue[24] = [1412, 85, 1545, 81]
Expand Down Expand Up @@ -351,7 +363,6 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True):
else:
T1 = Tissue[iTissue, 2]
T2 = Tissue[iTissue, 3]

if ivim_cont and not np.isnan([D[iTissue], f[iTissue], Ds[iTissue]]).any():
# note we are assuming blood fraction has the same T1 as tissue fraction here for simplicity. Can be changed in future.
Dtemp=D[iTissue]
Expand All @@ -362,8 +373,11 @@ def XCAT_to_MR_DCE(XCAT, TR, TE, bvalue, D, f, Ds, b0=3, ivim_cont = True):
ftemp=np.random.rand(1)*0.5
Dstemp=5e-3+np.random.rand(1)*1e-1
S0 = ivim(bvalue,Dtemp,ftemp,Dstemp)
if T1 > 0 or T2 > 0:
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0 * (1 - 2 * np.exp(-(TR - TE / 2) / T1) + np.exp(-TR / T1)) * np.exp(-TE / T2)
if T1T2:
if T1 > 0 or T2 > 0:
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0 * (1 - 2 * np.exp(-(TR - TE / 2) / T1) + np.exp(-TR / T1)) * np.exp(-TE / T2)
else:
MR = MR + np.tile(np.expand_dims(XCAT == iTissue,3),len(S0)) * S0
Dim = Dim + (XCAT == iTissue) * Dtemp
fim = fim + (XCAT == iTissue) * ftemp
Dpim = Dpim + (XCAT == iTissue) * Dstemp
Expand Down Expand Up @@ -403,6 +417,7 @@ def parse_bvalues_file(file_path):
parser.add_argument("-n", "--noise", type=float, default=0.0005, help="Noise")
parser.add_argument("-m", "--motion", action="store_true", help="Motion flag")
parser.add_argument("-i", "--interleaved", action="store_true", help="Interleaved flag")
parser.add_argument("-u", "--T1T2", action="store_true", help="weight signal with T1T2") # note, set this to zero when generating test data for unit testing!
args = parser.parse_args()

if args.bvalues_file and args.bvalue:
Expand All @@ -420,14 +435,15 @@ def parse_bvalues_file(file_path):
noise = args.noise
motion = args.motion
interleaved = args.interleaved
T1T2 = args.T1T2
download_data()
for key, bvalue in bvalues.items():
bvalue = np.array(bvalue)
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved)
sig, XCAT, Dim, fim, Dpim, legend = phantom(bvalue, noise, motion=motion, interleaved=interleaved,T1T2=T1T2)
# sig = np.flip(sig,axis=0)
# sig = np.flip(sig,axis=1)
res=np.eye(4)
res[2]=2
res[2,2]=2

voxel_selector_fraction = 0.5
D, f, Ds = contrast_curve_calc()
Expand Down
12 changes: 9 additions & 3 deletions src/wrappers/OsipiBase.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from scipy.stats import norm
import pathlib
import sys
from tqdm import tqdm

class OsipiBase:
"""The base class for OSIPI IVIM fitting"""
Expand Down Expand Up @@ -47,7 +48,7 @@ def initialize(**kwargs):
pass

#def osipi_fit(self, data=None, bvalues=None, thresholds=None, bounds=None, initial_guess=None, **kwargs):
def osipi_fit(self, data, bvalues, **kwargs):
def osipi_fit(self, data, bvalues=None, **kwargs):
"""Fits the data with the bvalues
Returns [S0, f, Dstar, D]
"""
Expand All @@ -68,7 +69,6 @@ def osipi_fit(self, data, bvalues, **kwargs):
#kwargs["bvalues"] = use_bvalues

#args = [data, use_bvalues, use_thresholds]
args = [data, use_bvalues]
#if self.required_bounds or self.required_bounds_optional:
#args.append(use_bounds)
#if self.required_initial_guess or self.required_initial_guess_optional:
Expand All @@ -83,7 +83,13 @@ def osipi_fit(self, data, bvalues, **kwargs):

#args = [data, use_bvalues, use_initial_guess, use_bounds, use_thresholds]
#args = [arg for arg in args if arg is not None]
results = self.ivim_fit(*args, **kwargs)

# Assuming the last dimension of the data is the signal values of each b-value
results = np.empty(list(data.shape[:-1])+[3]) # Create an array with the voxel dimensions + the ones required for the fit
for ijk in tqdm(np.ndindex(data.shape[:-1]), total=np.prod(data.shape[:-1])):
args = [data[ijk], use_bvalues]
fit = list(self.ivim_fit(*args, **kwargs))
results[ijk] = fit

#self.parameter_estimates = self.ivim_fit(data, bvalues)
return results
Expand Down
2 changes: 1 addition & 1 deletion tests/IVIMmodels/unit_tests/algorithms.json
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@
},
"ETP_SRI_LinearFitting": {
"xfail_names": {
"Vein": true
"Blood RV": true
},
"options": {
"thresholds": [500]
Expand Down
6 changes: 6 additions & 0 deletions tests/IVIMmodels/unit_tests/compare.r
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,12 @@
#Run like this:
#Rscript --vanilla tests/IVIMmodels/unit_tests/compare.r test_output.csv test_reference.csv reference_output.csv test_results.csv

# If this script fails:
# 1. Save the "Comparison" file from the run on Github, OR run this file directly
# 2. Find the file producted "test_reference.csv" on Github, or whatever the "reference_file" variable was called
# 3. This replaces "tests/IVIMmodels/unit_tests/reference_output.csv" in the repository
# 4. For the algorithm "IAR_LU_modified_mix", replace the "f_f_alpha, Dp_f_alpha, D_f_alpha, f_t_alpha, Dp_t_alpha, D_t_alpha" columns with "0.01,0.01,0.01,0.0,0.0,0.0"

args = commandArgs(trailingOnly=TRUE)
# Define file paths
test_file <- "test_output.csv"
Expand Down
Loading

0 comments on commit 575850a

Please sign in to comment.