Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add HRRR CONUS grid #19

Merged
merged 7 commits into from
Sep 30, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 4 additions & 1 deletion earth2grid/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,14 @@
# limitations under the License.
import torch

from earth2grid import base, healpix, latlon
from earth2grid import base, healpix, latlon, lcc
from earth2grid._regrid import BilinearInterpolator, Identity, KNNS2Interpolator, Regridder

__all__ = [
"base",
"healpix",
"latlon",
"lcc",
"get_regridder",
"BilinearInterpolator",
"KNNS2Interpolator",
Expand All @@ -36,6 +37,8 @@ def get_regridder(src: base.Grid, dest: base.Grid) -> torch.nn.Module:
return src.get_bilinear_regridder_to(dest.lat, dest.lon)
elif isinstance(src, latlon.LatLonGrid) and isinstance(dest, healpix.Grid):
return src.get_bilinear_regridder_to(dest.lat, dest.lon)
elif isinstance(src, lcc.LambertConformalConicGrid):
return src.get_bilinear_regridder_to(dest.lat, dest.lon)
elif isinstance(src, healpix.Grid):
return src.get_bilinear_regridder_to(dest.lat, dest.lon)
elif isinstance(dest, healpix.Grid):
Expand Down
8 changes: 4 additions & 4 deletions earth2grid/_regrid.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def forward(self, z):
weight = self.weight.view(-1, p)

# using embedding bag is 2x faster on cpu and 4x on gpu.
output = torch.nn.functional.embedding_bag(index, zrs, per_sample_weights=weight, mode='sum')
output = torch.nn.functional.embedding_bag(index, zrs, per_sample_weights=weight, mode="sum")
output = output.T.view(*shape, -1)
return output.reshape(list(shape) + output_shape)

Expand Down Expand Up @@ -173,12 +173,12 @@ def forward(self, z: torch.Tensor):
*shape, y, x = z.shape
zrs = z.view(-1, y * x).T
# using embedding bag is 2x faster on cpu and 4x on gpu.
output = torch.nn.functional.embedding_bag(self.index, zrs, per_sample_weights=self.weights, mode='sum')
output = torch.nn.functional.embedding_bag(self.index, zrs, per_sample_weights=self.weights, mode="sum")
interpolated = torch.full(
[self.mask.numel(), zrs.shape[1]], fill_value=self.fill_value, dtype=z.dtype, device=z.device
)
interpolated.masked_scatter_(self.mask.unsqueeze(-1), output)
interpolated = interpolated.T.view(*shape, self.mask.numel())
interpolated.masked_scatter_(self.mask.view(-1, 1), output)
interpolated = interpolated.T.view(*shape, *self.mask.shape)
return interpolated


Expand Down
190 changes: 190 additions & 0 deletions earth2grid/lcc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch

from earth2grid import base
from earth2grid._regrid import BilinearInterpolator

try:
import pyvista as pv
except ImportError:
pv = None

__all__ = [
"LambertConformalConicProjection",
"LambertConformalConicGrid",
"HRRR_CONUS_PROJECTION",
"HRRR_CONUS_GRID",
]

simonbyrne marked this conversation as resolved.
Show resolved Hide resolved

class LambertConformalConicProjection:
def __init__(self, lat0: float, lon0: float, lat1: float, lat2: float, radius: float):
"""

Args:
lat0: latitude of origin (degrees)
lon0: longitude of origin (degrees)
lat1: first standard parallel (degrees)
lat2: second standard parallel (degrees)
radius: radius of sphere (m)

"""

self.lon0 = lon0
self.lat0 = lat0
self.lat1 = lat1
self.lat2 = lat2
self.radius = radius

c1 = np.cos(np.deg2rad(lat1))
c2 = np.cos(np.deg2rad(lat2))
t1 = np.tan(np.pi / 4 + np.deg2rad(lat1) / 2)
t2 = np.tan(np.pi / 4 + np.deg2rad(lat2) / 2)

if np.abs(lat1 - lat2) < 1e-8:
self.n = np.sin(np.deg2rad(lat1))
else:
self.n = np.log(c1 / c2) / np.log(t2 / t1)

self.RF = radius * c1 * np.power(t1, self.n) / self.n
self.rho0 = self._rho(lat0)

def _rho(self, lat):
return self.RF / np.power(np.tan(np.pi / 4 + np.deg2rad(lat) / 2), self.n)

def _theta(self, lon):
"""
Angle of deviation (in radians) of the projected grid from the regular grid,
for a given longitude (in degrees).

To convert to U and V on the projected grid to easterly / northerly components:
UN = cos(theta) * U + sin(theta) * V
VN = - sin(theta) * U + cos(theta) * V
"""
# center about reference longitude
delta_lon = lon - self.lon0
delta_lon = delta_lon - np.round(delta_lon / 360) * 360 # convert to [-180, 180]
return self.n * np.deg2rad(delta_lon)

def project(self, lat, lon):
"""
Compute the projected x,y from lat,lon.
"""
rho = self._rho(lat)
theta = self._theta(lon)

x = rho * np.sin(theta)
y = self.rho0 - rho * np.cos(theta)
return x, y

def inverse_project(self, x, y):
"""
Compute the lat,lon from the projected x,y.
"""
rho = np.hypot(x, self.rho0 - y)
theta = np.arctan2(x, self.rho0 - y)

lat = np.rad2deg(2 * np.arctan(np.power(self.RF / rho, 1 / self.n))) - 90
lon = self.lon0 + np.rad2deg(theta / self.n)
return lat, lon


# Projection used by HRRR CONUS (Continental US) data
# https://rapidrefresh.noaa.gov/hrrr/HRRR_conus.domain.txt
HRRR_CONUS_PROJECTION = LambertConformalConicProjection(lon0=-97.5, lat0=38.5, lat1=38.5, lat2=38.5, radius=6371229.0)


class LambertConformalConicGrid(base.Grid):
# nothing here is specific to the projection, so could be shared by any projected rectilinear grid
def __init__(self, projection: LambertConformalConicProjection, x, y):
"""
Args:
projection: LambertConformalConicProjection object
x: range of x values
y: range of y values

"""
self.projection = projection

self.x = np.array(x)
self.y = np.array(y)

@property
def lat_lon(self):
mesh_x, mesh_y = np.meshgrid(self.x, self.y)
return self.projection.inverse_project(mesh_x, mesh_y)

@property
def lat(self):
return self.lat_lon[0]

@property
def lon(self):
return self.lat_lon[1]

@property
def shape(self):
return (len(self.y), len(self.x))

def __getitem__(self, idxs):
yidxs, xidxs = idxs
return LambertConformalConicGrid(self.projection, x=self.x[xidxs], y=self.y[yidxs])

def get_bilinear_regridder_to(self, lat: np.ndarray, lon: np.ndarray):
"""Get regridder to the specified lat and lon points"""

x, y = self.projection.project(lat, lon)

return BilinearInterpolator(
x_coords=torch.from_numpy(self.x),
y_coords=torch.from_numpy(self.y),
x_query=torch.from_numpy(x),
y_query=torch.from_numpy(y),
)

def visualize(self, data):
raise NotImplementedError()

def to_pyvista(self):
if pv is None:
raise ImportError("Need to install pyvista")

lat, lon = self.lat_lon
y = np.cos(np.deg2rad(lat)) * np.sin(np.deg2rad(lon))
x = np.cos(np.deg2rad(lat)) * np.cos(np.deg2rad(lon))
z = np.sin(np.deg2rad(lat))
grid = pv.StructuredGrid(x, y, z)
return grid


def hrrr_conus_grid(ix0=0, iy0=0, nx=1799, ny=1059):
# coordinates of point in top-left corner
lat0 = 21.138123
lon0 = 237.280472
# grid length (m)
scale = 3000.0
# coordinates on projected space
x0, y0 = HRRR_CONUS_PROJECTION.project(lat0, lon0)

x = [x0 + i * scale for i in range(ix0, ix0 + nx)]
y = [y0 + i * scale for i in range(iy0, iy0 + ny)]

return LambertConformalConicGrid(HRRR_CONUS_PROJECTION, x, y)


# Grid used by HRRR CONUS (Continental US) data
HRRR_CONUS_GRID = hrrr_conus_grid()
77 changes: 77 additions & 0 deletions tests/test_lcc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# %%
import numpy as np
import pytest
import torch

from earth2grid.lcc import HRRR_CONUS_GRID


def test_grid_shape():
assert HRRR_CONUS_GRID.lat.shape == HRRR_CONUS_GRID.shape
assert HRRR_CONUS_GRID.lon.shape == HRRR_CONUS_GRID.shape


lats = np.array(
[
[21.138123, 21.801926, 22.393631, 22.911015],
[23.636763, 24.328228, 24.944668, 25.48374],
[26.155672, 26.875362, 27.517046, 28.078257],
[28.69017, 29.438608, 30.106009, 30.68978],
]
)

lons = np.array(
[
[-122.71953, -120.03195, -117.304596, -114.54146],
[-123.491356, -120.72898, -117.92319, -115.07828],
[-124.310524, -121.469505, -118.58098, -115.649574],
[-125.181404, -122.25762, -119.28173, -116.25871],
]
)


def test_grid_vals():
assert HRRR_CONUS_GRID.lat[0:400:100, 0:400:100] == pytest.approx(lats)
assert HRRR_CONUS_GRID.lon[0:400:100, 0:400:100] == pytest.approx(lons)


def test_grid_slice():
slice_grid = HRRR_CONUS_GRID[0:400:100, 0:400:100]
assert slice_grid.lat == pytest.approx(lats)
assert slice_grid.lon == pytest.approx(lons)


def test_regrid_1d():
src = HRRR_CONUS_GRID
dest_lat = np.linspace(25.0, 33.0, 10)
dest_lon = np.linspace(-123, -98, 10)
regrid = src.get_bilinear_regridder_to(dest_lat, dest_lon)
src_lat = torch.broadcast_to(torch.tensor(src.lat), src.shape)
out_lat = regrid(src_lat)

assert torch.allclose(out_lat, torch.tensor(dest_lat))


def test_regrid_2d():
src = HRRR_CONUS_GRID
dest_lat, dest_lon = np.meshgrid(np.linspace(25.0, 33.0, 10), np.linspace(-123, -98, 12))
regrid = src.get_bilinear_regridder_to(dest_lat, dest_lon)
src_lat = torch.broadcast_to(torch.tensor(src.lat), src.shape)
out_lat = regrid(src_lat)

assert torch.allclose(out_lat, torch.tensor(dest_lat))
Loading