git clone --recursive [email protected]:MMintLab/usdf.git
cd usdf
pip install -e .
Setup pointnet and pytorch-meta:
cd 3rd/pointnet.pytorch
pip install -e .
cd ../pytorch-meta
pip install -e .
Optional: Build the Manifold repo:
cd 3rd/Manifold
mkdir build && cd build
cmake .. -DCMAKE_BUILD_TYPE=Release
make -j8
Generate partial view dataset used for inference:
python scripts/dataset/render_dataset.py cfg/generative/test/test_v2.yaml test
Visualize:
python scripts/vis_dataset.py cfg/generative/test/test_v2.yaml test
Generate set of mesh predictions given partial views:
python scripts/generate.py cfg/generative/deepsdf_v1.yaml -d cfg/generative/test/test_v2.yaml -o out/generation/project/ours/ -v
We use the Manifold repo to make sure meshes are watertight. Make sure you followed the instructions above to build the manifold repo.
- Make single mesh watertight:
python scripts/make_mesh_watertight.py <path_to_input_mesh> <path_to_output_mesh>
- Make a category of ShapeNet watertight:
python scripts/make_watertight_shapenet.py <path_to_input_category> <output_dir>