This is a github repository of a CALAMARI: Contact-Aware and Language conditioned spatial Action MApping for contact-RIch manipulation (CoRL 2023).
We trained with the GPU A6000 and ran inference on the RTX 3080 and RTX 2070.
conda create -n calamari python=3.8
conda activate calamari
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
conda env create -f environment.yml
We utilize heatmap extraction from Semantic Abstraction (Huy et al., CoRL 2022)."
git submodule add -f [email protected]:yswi/semantic-abstraction.git calamari/semantic_abstraction
git submodule add -b ros -f [email protected]:UM-ARM-Lab/pytorch_mppi.git calamari/pytorch_mppi
pip install -e .
-
Download the dataset.zip from the link. Unzip the folder under
dataset/
folder. -
Download the pretrained .pth from the link. Put them under
script/model/
folder. -
As a result, the directory should be
── calamari
│ ├── calamari
│ ├── dataset
│ │ │── wipe_desk
│ │ │── sweep_to_dustpan
│ │ │── push_buttons
│ │ │── ...
│ ├── script
│ ├── ├── model
...
python script/train.py --task <TASK NAME> --logdir <FOLDER NAME> --gpu_id <GPU IDX>
Note: We use A6000 (48G) for training. You can decrease the batch size in config_multi_conv.py to match your GPU capacity, but a performance drop should be expected.
Inference requires installation of CoppeliaSim, PyRep, and RLBench. To do so, clone RLbench repo to your project directory as
git clone [email protected]:MMintLab/rlbench.git
cd RLbench
and follow the instructions for PyREP and CoppeliaSim setup.
python script/plan/mpc.py --task <task name> --txt_idx <txt idx> --ttm_idx <ttm idx> -v <task variation idx> -s 0 --logdir <log dir>
Below are the combinations of parameters we used for the paper. You can find the inference code from
task | object | ttm idx | task variation idx |
---|---|---|---|
wipe | train obj | 0 | 0 |
test obj1 | 1 | 0 | |
test obj2 | 2 | 0 | |
sweep | train obj | 0 | 0 |
test obj1 | 1 | 0 | |
test obj2 | 2 | 0 | |
push | train obj | 0 | 0 |
test obj1 | 0 | 1 | |
test obj2 | 0 | 2 |
Generate heatmaps of the custom data.
python script/dataprocessing/generate_heatmap.py --task <TASK>
This repository trains the policy based on the RLbench dataset. Please reach out to the author [email protected] for further questions.