Skip to content

MMintLab/CTTP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CTTP

We introduce a contrastive self-supervised learning approach that represents tactile feedback across different sensor types. Our method utilizes paired tactile data—where two distinct sensors, in our case Soft Bubbles and GelSlims, grasp the same object in the same configuration—to learn a unified latent representation.

Dataset

We use Touch2Touch Dataset.

Paper: https://www.arxiv.org/abs/2409.08269

Dataset: https://drive.google.com/drive/folders/15vWo5AWw9xVKE1wHbLhzm40ClPyRBYk5?usp=sharing

Before installation

Install SimCLR package: https://github.com/Spijkervet/SimCLR/tree/master

pip install simclr

Install T3 package: https://github.com/alanzjl/t3/tree/341177f232df3b824a5246b0d1855cd9e4d2cf29

git clone https://github.com/alanzjl/t3
cd t3
pip install -e .

Checkpoints

Download checkpoint to CTTP root folder: https://drive.google.com/drive/folders/1A5bRuciQ4nuSa1r1X7JB7pMYJHJ6j6vc

CTTP Model Checkpoint: https://drive.google.com/file/d/10_HR54aKSUuF3hQPTY1zLOgYuBHMITch/view?usp=drive_link

Train CTTP Model

cd scripts
python train_model.py --model_name simclr --device cuda:0 --dataset dataset_1

Evaluate CTTP Model

cd joint_embedding_learning/
python evaluation.py --dataset_name dataset_1 --run_name dataset_1_run_B_128 --model_name simclr

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published