1: Download the RaDICaL dataset and install the RaDICaL SDK https://github.com/moodoki/radical_sdk
2: Extract .h5 bags to numpy files using radical/extract.py /path/to/radical/radar_30m/*.bag.h5 /path/radical/radarcfg/outdoor_human_rcs_30m.cfg /path/to/output/radar_frames.npy
.
3: Generate a train, val, and test split using python generate_training_data.py /path/to/output/radar_frames.npy /path/to/generated/files
.
First set required envorinment variables.
export NORM_PATH=/path/to/norm/pkl
export TRAIN_CLEAN=/path/to/generated/files/train_clean.npy
export VAL_CLEAN=/path/to/generated/files/val_clean.npy
export VAL_MASK=/path/to/generated/files/val_mask.npy
export VAL_DISTURBED=/path/to/generated/files/val_disturbed.npy
Depending on the method you want to train you can use different training scripts:
RIDAM Detection and Mitigation
python train_ridam_detection_mitigation.py $NORM_PATH $TRAIN_CLEAN $VAL_CLEAN $VAL_MASK $VAL_DISTURBED
AE-Gate Detection
python train_ae-gate_mitigation.py $NORM_PATH $TRAIN_CLEAN $VAL_CLEAN $VAL_MASK $VAL_DISTURBED
AE-Gate Mitigation
python train_ae-gate_detection.py $NORM_PATH $TRAIN_CLEAN $VAL_CLEAN $VAL_MASK $VAL_DISTURBED
CNNTD Mitigation
python train_cnntd_mitigation.py $NORM_PATH $TRAIN_CLEAN $VAL_CLEAN $VAL_MASK $VAL_DISTURBED
CNNRD Mitigation
python train_cnnrd_mitigation.py $NORM_PATH $TRAIN_CLEAN $VAL_CLEAN $VAL_MASK $VAL_DISTURBED
Generate tests sets using generate_training_data.py
. Use val_clean.npy as clean input and change simulation parameters according to your desired testing environment.
To evaluate the detection and mitigation capability of different methods use the evaluate_detection.py
and evaluate_mitigation.py
, respectively.
Inside you can comment/uncomment methods you want to evaluate.
Please make sure that you set the ckpt path for the learned methods (commented by todo).
will be released soon.