Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixing aggregation and some aesthetics in automatic postprocessing #273

Merged
merged 6 commits into from
Aug 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -51,8 +51,7 @@ aggregate_and_calc_loc_likelihoods <- function(
## Filter to this location
dplyr::filter(
modeled_outcome,
!!rlang::sym(obs_subpop) == location,
date %in% unique(obs$date[obs$subpop == location])
!!rlang::sym(obs_subpop) == location
) %>%
## Reformat into form the algorithm is looking for
inference::getStats(
Expand Down
226 changes: 171 additions & 55 deletions postprocessing/postprocess_snapshot.R
Original file line number Diff line number Diff line change
Expand Up @@ -170,25 +170,71 @@ if("hosp" %in% model_outputs){
# pdf(fname, width = 20, height = 18)
# pdf(fname)
fit_stats <- names(config$inference$statistics)
subpop_names <- unique(outputs_global$hosp %>% .[,subpop])

for(i in 1:length(fit_stats)){
statistics <- purrr::flatten(config$inference$statistics[i])
cols_sim <- c("date", statistics$sim_var, "subpop","slot")
cols_data <- c("date", "subpop", statistics$data_var)
hosp_outputs_global_tmp <- copy(outputs_global$hosp)[,..cols_sim]

# aggregate based on what is in the config
df_sim <- lapply(subpop_names, function(y) {
lapply(unique(outputs_global$hosp$slot), function(x)
purrr::flatten_df(inference::getStats(
hosp_outputs_global_tmp %>% .[subpop == y & slot == x] ,
"date",
"sim_var",
stat_list = config$inference$statistics[i],
start_date = config$start_date_groundtruth,
end_date = config$end_date_groundtruth
)) %>% dplyr::mutate(subpop = y, slot = x)) %>% dplyr::bind_rows()
}) %>% dplyr::bind_rows()

df_data <- lapply(subpop_names, function(x) {
purrr::flatten_df(
inference::getStats(
gt_data %>% .[subpop == x,..cols_data],
"date",
"data_var",
stat_list = config$inference$statistics[i],
start_date = config$start_date_groundtruth,
end_date = config$end_date_groundtruth
)) %>% dplyr::mutate(subpop = x) %>%
mutate(data_var = as.numeric(data_var)) }) %>% dplyr::bind_rows()


## summarize slots
print(outputs_global$hosp %>%
.[, ..cols_sim] %>%
# print(outputs_global$hosp %>%
# .[, ..cols_sim] %>%
# .[, date := lubridate::as_date(date)] %>%
# .[, as.list(quantile(get(statistics$sim_var), c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", "subpop")] %>%
# ggplot() +
# geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) +
# geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) +
# geom_line(aes(x = date, y = V3)) +
# geom_point(data = gt_data %>%
# .[, ..cols_data],
# aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) +
# facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
# labs(x = 'date', y = fit_stats[i], title = statistics$sim_var) +
# theme_classic()
# )
print(
df_sim %>%
setDT() %>%
.[, date := lubridate::as_date(date)] %>%
.[, as.list(quantile(get(statistics$sim_var), c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", "subpop")] %>%
.[, as.list(quantile(sim_var, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", "subpop")] %>%
setnames(., paste0("V", 1:5), paste0("q", c(.05,.25,.5,.75,.95))) %>%
ggplot() +
geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) +
geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) +
geom_line(aes(x = date, y = V3)) +
geom_point(data = gt_data %>%
.[, ..cols_data],
aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) +
facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
labs(x = 'date', y = fit_stats[i], title = statistics$sim_var) +
geom_ribbon(aes(x = date, ymin = q0.05, ymax = q0.95), alpha = 0.1) +
geom_ribbon(aes(x = date, ymin = q0.25, ymax = q0.75), alpha = 0.1) +
geom_line(aes(x = date, y = q0.5)) +
# if inference, plot gt along side
geom_point(data = df_data,
aes(lubridate::as_date(date), data_var), color = 'firebrick', alpha = 0.2, size=1) +
facet_wrap(~subpop, scales = 'free') +
labs(x = 'date', y = fit_stats[i]) +
theme_classic()
)

Expand All @@ -206,23 +252,44 @@ if("hosp" %in% model_outputs){
# )

## plot cumulatives
print(outputs_global$hosp %>%
.[, ..cols_sim] %>%
.[, date := lubridate::as_date(date)] %>%
.[, csum := cumsum(get(statistics$sim_var)), by = .(subpop, slot)] %>%
.[, as.list(quantile(csum, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", "subpop")] %>%
ggplot() +
geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) +
geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) +
geom_line(aes(x = date, y = V3)) +
geom_point(data = gt_data %>%
.[, ..cols_data] %>%
.[, csum := cumsum(replace_na(get(statistics$data_var), 0)) , by = .(subpop)]
,
aes(lubridate::as_date(date), csum), color = 'firebrick', alpha = 0.1) +
facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
labs(x = 'date', y = fit_stats[i], title = paste0("cumulative ", statistics$sim_var)) +
theme_classic()
print(
df_sim %>%
setDT() %>%
.[, date := lubridate::as_date(date)] %>%
.[, .(date, subpop, sim_var, slot)] %>%
data.table::melt(., id.vars = c("date", "slot", "subpop")) %>%
# dplyr::arrange(subpop, slot, date) %>%
.[, csum := cumsum(value), by = .(slot, subpop, variable)] %>%
.[, as.list(quantile(csum, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", config$subpop_setup$subpop)] %>%
setnames(., paste0("V", 1:5), paste0("q", c(.05,.25,.5,.75,.95))) %>%
ggplot() +
geom_ribbon(aes(x = date, ymin = q0.05, ymax = q0.95), alpha = 0.1) +
geom_ribbon(aes(x = date, ymin = q0.25, ymax = q0.75), alpha = 0.1) +
geom_line(aes(x = date, y = q0.5)) +
geom_point(data = df_data %>% setDT() %>%
.[, csum := cumsum(data_var) , by = .(subpop)],
aes(lubridate::as_date(date), csum), color = 'firebrick', alpha = 0.2, size=1) +
facet_wrap(~subpop, scales = 'free') +
# facet_wrap(~get(subpop), scales = 'free') +
labs(x = 'date', y = paste0("cumulative ", fit_stats[i])) +
theme_classic()
# outputs_global$hosp %>%
# .[, ..cols_sim] %>%
# .[, date := lubridate::as_date(date)] %>%
# .[, csum := cumsum(get(statistics$sim_var)), by = .(subpop, slot)] %>%
# .[, as.list(quantile(csum, c(.05, .25, .5, .75, .95), na.rm = TRUE, names = FALSE)), by = c("date", "subpop")] %>%
# ggplot() +
# geom_ribbon(aes(x = date, ymin = V1, ymax = V5), alpha = 0.1) +
# geom_ribbon(aes(x = date, ymin = V2, ymax = V4), alpha = 0.1) +
# geom_line(aes(x = date, y = V3)) +
# geom_point(data = gt_data %>%
# .[, ..cols_data] %>%
# .[, csum := cumsum(replace_na(get(statistics$data_var), 0)) , by = .(subpop)]
# ,
# aes(lubridate::as_date(date), csum), color = 'firebrick', alpha = 0.1) +
# facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
# labs(x = 'date', y = fit_stats[i], title = paste0("cumulative ", statistics$sim_var)) +
# theme_classic()
)

}
Expand All @@ -231,47 +298,96 @@ if("hosp" %in% model_outputs){

## hosp by highest and lowest llik

if("llik" %in% model_outputs){
llik_rank <- copy(outputs_global$llik) %>%
.[, .SD[order(ll)], subpop]
high_low_llik <- rbindlist(list(data.table(llik_rank, key = "subpop") %>%
.[, head(.SD,5), by = subpop] %>%
.[, llik_bin := "top"],
data.table(llik_rank, key = "subpop") %>%
.[, tail(.SD,5), by = subpop]%>%
.[, llik_bin := "bottom"])
)
}

fname <- paste0("pplot/hosp_by_llik_mod_outputs_", opt$run_id,".pdf")
# pdf_dims <- data.frame(width = gg_cols*2, length = num_nodes/gg_cols * 2)
# pdf(fname, width = pdf_dims$width, height = pdf_dims$length)
pdf(fname, width = 20, height = 20)
pdf(fname, width = 20, height = 10)

for(i in 1:length(fit_stats)){
statistics <- purrr::flatten(config$inference$statistics[i])
cols_sim <- c("date", statistics$sim_var, "subpop","slot")
cols_data <- c("date", "subpop", statistics$data_var)
hosp_outputs_global_tmp <- copy(outputs_global$hosp)[,..cols_sim]

if("llik" %in% model_outputs){
llik_rank <- copy(outputs_global$llik) %>%
.[, .SD[order(ll)], subpop]
high_low_llik <- rbindlist(list(data.table(llik_rank, key = "subpop") %>%
.[, head(.SD,5), by = subpop] %>%
.[, llik_bin := "top"],
data.table(llik_rank, key = "subpop") %>%
.[, tail(.SD,5), by = subpop]%>%
.[, llik_bin := "bottom"])
)
# high_low_hosp_llik <- copy(outputs_global$hosp) %>%
# .[high_low_llik, on = c("slot", "subpop"), allow.cartesian = TRUE]

high_low_hosp_llik <- copy(outputs_global$hosp) %>%
.[high_low_llik, on = c("slot", "subpop"), allow.cartesian = TRUE]
# aggregate simulation output and data by time based on what is in the config
df_sim <- lapply(subpop_names, function(y) {
lapply(unique(outputs_global$hosp$slot), function(x)
purrr::flatten_df(inference::getStats(
hosp_outputs_global_tmp %>% .[subpop == y & slot == x] ,
"date",
"sim_var",
stat_list = config$inference$statistics[i],
start_date = config$start_date_groundtruth,
end_date = config$end_date_groundtruth
)) %>% dplyr::mutate(subpop = y, slot = x)) %>% dplyr::bind_rows()
}) %>% dplyr::bind_rows() %>% setDT()

df_data <- lapply(subpop_names, function(x) {
purrr::flatten_df(
inference::getStats(
gt_data %>% .[subpop == x,..cols_data],
"date",
"data_var",
stat_list = config$inference$statistics[i],
start_date = config$start_date_groundtruth,
end_date = config$end_date_groundtruth
)) %>% dplyr::mutate(subpop = x) %>%
dplyr::mutate(data_var = as.numeric(data_var)) %>%
dplyr::mutate(date = lubridate::as_date(date)) }) %>%
dplyr::bind_rows() %>% setDT()

# add likelihood ranking to simulation output
high_low_hosp_llik <- df_sim %>%
.[high_low_llik, on = c("slot", "subpop"), allow.cartesian=TRUE] %>% # right join by "on" variables
.[subpop != "Total"]

hosp_llik_plots <- lapply(unique(high_low_hosp_llik %>% .[, subpop]),
function(e){
high_low_hosp_llik %>%
.[, date := lubridate::as_date(date)] %>%
.[subpop == e] %>%
ggplot() +
geom_line(aes(lubridate::as_date(date), get(statistics$data_var),
group = slot, color = ll))+#, linetype = llik_bin)) +
# scale_linetype_manual(values = c(1, 2), name = "likelihood\nbin") +
.[, date := lubridate::as_date(date)] %>%
ggplot() +
geom_line(aes(x = date, y = sim_var, group = slot, color = ll)) +
scale_linetype_manual(values = c(1, 2), name = "likelihood\nbin") +
scale_color_viridis_c(option = "D", name = "log\nlikelihood") +
geom_point(data = gt_data %>%
.[, ..cols_data] %>%
.[subpop == e] ,
aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) +
facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
labs(x = 'date', y = fit_stats[i]) + #, title = paste0("top 5, bottom 5 lliks, ", statistics$sim_var)) +
theme_classic() +
guides(linetype = 'none')
geom_point(data = df_data %>% .[subpop == e],
aes(lubridate::as_date(date), data_var), color = 'firebrick', alpha = 0.2, size=1) +
facet_wrap(~subpop, scales = 'free') +
labs(x = 'date', y = fit_stats[i]) +
theme_classic() +
theme(legend.key.size = unit(0.2, "cm"))
# high_low_hosp_llik %>%
# .[, date := lubridate::as_date(date)] %>%
# .[subpop == e] %>%
# ggplot() +
# geom_line(aes(lubridate::as_date(date), get(statistics$data_var),
# group = slot, color = ll))+#, linetype = llik_bin)) +
# # scale_linetype_manual(values = c(1, 2), name = "likelihood\nbin") +
# scale_color_viridis_c(option = "D", name = "log\nlikelihood") +
# geom_point(data = gt_data %>%
# .[, ..cols_data] %>%
# .[subpop == e] ,
# aes(lubridate::as_date(date), get(statistics$data_var)), color = 'firebrick', alpha = 0.1) +
# facet_wrap(~subpop, scales = 'free', ncol = gg_cols) +
# labs(x = 'date', y = fit_stats[i]) + #, title = paste0("top 5, bottom 5 lliks, ", statistics$sim_var)) +
# theme_classic() +
# guides(linetype = 'none')
}
)

Expand All @@ -290,8 +406,8 @@ if("hnpi" %in% model_outputs){

gg_cols <- 4
num_nodes <- length(unique(outputs_global$hnpi %>% .[,subpop]))
pdf_dims <- data.frame(width = gg_cols*3, length = num_nodes/gg_cols * 2)
#pdf_dims <- data.frame(width = 20, length = 5)
# pdf_dims <- data.frame(width = gg_cols*3, length = num_nodes/gg_cols * 2)
pdf_dims <- data.frame(width = 20, length = 10)

fname <- paste0("pplot/hnpi_mod_outputs_", opt$run_id,".pdf")
pdf(fname, width = pdf_dims$width, height = pdf_dims$length)
Expand Down
Loading