-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
406 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
import os | ||
|
||
import torch | ||
import torchvision | ||
import torch.nn as nn | ||
from Koniq_10k import Koniq_10k | ||
from PIL import Image | ||
from scipy import stats | ||
import random | ||
import torch.nn.functional as F | ||
import numpy as np | ||
from tqdm import tqdm | ||
torch.manual_seed(1) | ||
torch.cuda.manual_seed(1) | ||
random.seed(1) | ||
#os.environ['CUDA_VISIBLE_DEVICES'] = '1' | ||
|
||
def pil_loader(path): | ||
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835) | ||
with open(path, 'rb') as f: | ||
img = Image.open(f) | ||
return img.convert('RGB') | ||
|
||
|
||
def accimage_loader(path): | ||
import accimage | ||
try: | ||
return accimage.Image(path) | ||
except IOError: | ||
# Potentially a decoding problem, fall back to PIL.Image | ||
return pil_loader(path) | ||
|
||
|
||
def default_loader(path): | ||
from torchvision import get_image_backend | ||
if get_image_backend() == 'accimage': | ||
return accimage_loader(path) | ||
else: | ||
return pil_loader(path) | ||
|
||
|
||
|
||
class BaseCNN(torch.nn.Module): | ||
|
||
def __init__(self, options): | ||
"""Declare all needed layers.""" | ||
nn.Module.__init__(self) | ||
# Convolution and pooling layers of VGG-16. | ||
self.basemodel = torchvision.models.resnet101(pretrained=True) | ||
|
||
# Linear classifier. | ||
self.fc = torch.nn.Linear(2048, 1) | ||
|
||
if options['fc'] == True: | ||
# Freeze all previous layers. | ||
for param in self.basemodel.parameters(): | ||
param.requires_grad = False | ||
# Initialize the fc layers. | ||
nn.init.kaiming_normal_(self.fc.weight.data) | ||
if self.fc.bias is not None: | ||
nn.init.constant_(self.fc.bias.data, val=0) | ||
else: | ||
for param in self.basemodel.conv1.parameters(): | ||
param.requires_grad = False | ||
for param in self.basemodel.bn1.parameters(): | ||
param.requires_grad = False | ||
for param in self.basemodel.layer1.parameters(): | ||
param.requires_grad = False | ||
for param in self.basemodel.layer2.parameters(): | ||
param.requires_grad = False | ||
#for param in self.basemodel.layer3.parameters(): | ||
# param.requires_grad = False | ||
|
||
|
||
def forward(self, X): | ||
"""Forward pass of the network. | ||
""" | ||
X = self.basemodel.conv1(X) | ||
X = self.basemodel.bn1(X) | ||
X = self.basemodel.relu(X) | ||
X = self.basemodel.maxpool(X) | ||
X = self.basemodel.layer1(X) | ||
X = self.basemodel.layer2(X) | ||
X = self.basemodel.layer3(X) | ||
X = self.basemodel.layer4(X) | ||
X = self.basemodel.avgpool(X) | ||
X = X.squeeze(2).squeeze(2) | ||
#X = torch.mean(torch.mean(X4,2),2) | ||
X = self.fc(X) | ||
return X | ||
|
||
|
||
class TrainManager(object): | ||
def __init__(self, options, path): | ||
"""Prepare the network, criterion, solver, and data. | ||
Args: | ||
options, dict: Hyperparameters. | ||
""" | ||
print('Prepare the network and data.') | ||
self._options = options | ||
self._path = path | ||
|
||
# Network. | ||
self._net = torch.nn.DataParallel(BaseCNN(self._options), device_ids=[0]).cuda() | ||
if self._options['fc'] == False: | ||
self._net.load_state_dict(torch.load(path['fc_root'])) | ||
|
||
print(self._net) | ||
# Criterion. | ||
if self._options['objective'] == 'l2': | ||
self._criterion = nn.MSELoss().cuda() | ||
elif self._options['objective'] == 'l1': | ||
self._criterion = nn.L1Loss().cuda() | ||
else: | ||
self._criterion = nn.SmoothL1Loss().cuda() | ||
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
# Solver. | ||
if self._options['fc'] == True: | ||
self._solver = torch.optim.Adam( | ||
self._net.module.fc.parameters(), lr=self._options['base_lr'], | ||
weight_decay=self._options['weight_decay']) | ||
self._scheduler = torch.optim.lr_scheduler.StepLR(self._solver, step_size=6, gamma=0.1) | ||
else: | ||
self._solver = torch.optim.Adam( | ||
self._net.module.parameters(), lr=self._options['base_lr'], | ||
weight_decay=self._options['weight_decay']) | ||
self._scheduler = torch.optim.lr_scheduler.MultiStepLR(self._solver, milestones=[8, 16, 24], gamma=0.1) | ||
|
||
train_transforms = torchvision.transforms.Compose([ | ||
torchvision.transforms.RandomHorizontalFlip(), | ||
torchvision.transforms.Resize((768, 576)), | ||
torchvision.transforms.RandomCrop((576, 432)), | ||
torchvision.transforms.ToTensor(), | ||
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), | ||
std=(0.229, 0.224, 0.225))]) | ||
|
||
|
||
test_transforms = torchvision.transforms.Compose([ | ||
torchvision.transforms.Resize((768, 576)), | ||
torchvision.transforms.ToTensor(), | ||
torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), | ||
std=(0.229, 0.224, 0.225))]) | ||
|
||
train_data = Koniq_10k(root=self._path['koniq'], loader=default_loader, index=self._options['train_index'], | ||
transform=train_transforms) | ||
test_data = Koniq_10k(root=self._path['koniq'], loader=default_loader, index=self._options['test_index'], | ||
transform=test_transforms) | ||
|
||
self._train_loader = torch.utils.data.DataLoader( | ||
train_data, batch_size=self._options['batch_size'], | ||
shuffle=True, num_workers=12, pin_memory=True) | ||
self._test_loader = torch.utils.data.DataLoader( | ||
test_data, batch_size=1, | ||
shuffle=False, num_workers=12, pin_memory=True) | ||
|
||
def train(self): | ||
"""Train the network.""" | ||
print('Training.') | ||
best_srcc = 0.0 | ||
best_epoch = None | ||
print('Epoch\tTrain loss\tTrain_SRCC\tTest_SRCC\tTest_PLCC') | ||
for t in range(self._options['epochs']): | ||
epoch_loss = [] | ||
pscores = [] | ||
tscores = [] | ||
num_total = 0 | ||
for X, y in tqdm(self._train_loader): | ||
# Data. | ||
X = X.to(self.device) | ||
y = y.to(self.device) | ||
#X = torch.tensor(X.cuda()) | ||
#y = torch.tensor(y.cuda()) | ||
|
||
# Clear the existing gradients. | ||
self._solver.zero_grad() | ||
# Forward pass. | ||
score = self._net(X) | ||
loss = self._criterion(score, y.view(len(score),1).detach()) | ||
epoch_loss.append(loss.item()) | ||
# Prediction. | ||
num_total += y.size(0) | ||
pscores = pscores + score.cpu().tolist() | ||
tscores = tscores + y.cpu().tolist() | ||
# Backward pass. | ||
loss.backward() | ||
self._solver.step() | ||
train_srcc, _ = stats.spearmanr(pscores, tscores) | ||
test_srcc, test_plcc = self._consitency(self._test_loader) | ||
self._scheduler.step() | ||
if test_srcc > best_srcc: | ||
best_srcc = test_srcc | ||
best_epoch = t + 1 | ||
print('*', end='') | ||
pwd = os.getcwd() | ||
if self._options['fc'] == True: | ||
modelpath = os.path.join(pwd, 'fc_models', ('net_params' + '_best' + '.pkl')) | ||
else: | ||
modelpath = os.path.join(pwd, 'db_models', ('net_params' + '_best' + '.pkl')) | ||
torch.save(self._net.state_dict(), modelpath) | ||
|
||
print('%d\t%4.3f\t\t%4.4f\t\t%4.4f\t%4.4f' % | ||
(t+1, sum(epoch_loss) / len(epoch_loss), train_srcc, test_srcc, test_plcc)) | ||
|
||
print('Best at epoch %d, test srcc %f' % (best_epoch, best_srcc)) | ||
return best_srcc | ||
|
||
def _consitency(self, data_loader): | ||
self._net.train(False) | ||
num_total = 0 | ||
pscores = [] | ||
tscores = [] | ||
for X, y in data_loader: | ||
# Data. | ||
X = X.to(self.device) | ||
y = y.to(self.device) | ||
#X = torch.tensor(X.cuda()) | ||
#y = torch.tensor(y.cuda()) | ||
|
||
# Prediction. | ||
score = self._net(X) | ||
pscores = pscores + score[0].cpu().tolist() | ||
tscores = tscores + y.cpu().tolist() | ||
|
||
num_total += y.size(0) | ||
test_srcc, _ = stats.spearmanr(pscores,tscores) | ||
test_plcc, _ = stats.pearsonr(pscores,tscores) | ||
self._net.train(True) # Set the model to training phase | ||
return test_srcc, test_plcc | ||
|
||
def main(): | ||
"""The main function.""" | ||
import argparse | ||
parser = argparse.ArgumentParser( | ||
description='Train CNN for BIQA.') | ||
parser.add_argument('--base_lr', dest='base_lr', type=float, default=1e-4, | ||
help='Base learning rate for training.') | ||
parser.add_argument('--batch_size', dest='batch_size', type=int, | ||
default=24, help='Batch size.') | ||
parser.add_argument('--epochs', dest='epochs', type=int, | ||
default=30, help='Epochs for training.') | ||
parser.add_argument('--weight_decay', dest='weight_decay', type=float, | ||
default=5e-4, help='Weight decay.') | ||
parser.add_argument('--objective', dest='objective', type=str, | ||
default='smoothl1', help='l1 | l2 | smoothl1') | ||
|
||
|
||
args = parser.parse_args() | ||
if args.base_lr <= 0: | ||
raise AttributeError('--base_lr parameter must >0.') | ||
if args.batch_size <= 0: | ||
raise AttributeError('--batch_size parameter must >0.') | ||
if args.epochs < 0: | ||
raise AttributeError('--epochs parameter must >=0.') | ||
if args.weight_decay <= 0: | ||
raise AttributeError('--weight_decay parameter must >0.') | ||
|
||
options = { | ||
'base_lr': args.base_lr, | ||
'batch_size': args.batch_size, | ||
'epochs': args.epochs, | ||
'weight_decay': args.weight_decay, | ||
'objective': args.objective, | ||
'fc': [], | ||
'train_index': [], | ||
'test_index': [] | ||
} | ||
|
||
path = { | ||
'koniq': os.path.join('/home/zwx-sjtu/codebase/koniq-10k/'), | ||
'fc_model': os.path.join('fc_models'), | ||
'fc_root': os.path.join('fc_models', 'net_params_best.pkl'), | ||
'db_model': os.path.join('db_models') | ||
} | ||
|
||
index = list(range(0, 10073)) | ||
|
||
lr_backup = options['base_lr'] | ||
bs_backup = options['batch_size'] | ||
epoch_backup = options['epochs'] | ||
srcc_all = np.zeros((1, 10), dtype=np.float) | ||
|
||
for i in range(0,10): | ||
#randomly split train-test set | ||
random.shuffle(index) | ||
train_index = index[0:round(0.8*len(index))] | ||
test_index = index[round(0.8*len(index)):len(index)] | ||
|
||
options['train_index'] = train_index | ||
options['test_index'] = test_index | ||
#train the fully connected layer only | ||
options['fc'] = True | ||
options['base_lr'] = 1e-2 | ||
options['batch_size'] = 64 | ||
options['epochs'] = 12 | ||
manager = TrainManager(options, path) | ||
best_srcc = manager.train() | ||
|
||
#fine-tune all model | ||
options['fc'] = False | ||
options['base_lr'] = lr_backup | ||
options['batch_size'] = bs_backup | ||
options['epochs'] = epoch_backup | ||
manager = TrainManager(options, path) | ||
best_srcc = manager.train() | ||
|
||
srcc_all[0][i] = best_srcc | ||
|
||
srcc_mean = np.mean(srcc_all) | ||
print(srcc_all) | ||
print('average srcc:%4.4f' % (srcc_mean)) | ||
return best_srcc | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |
Oops, something went wrong.