-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
164 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
''' | ||
@file: BCNN.py | ||
@author: Jiangtao Xie | ||
@author: Peihua Li | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
|
||
class BCNN(nn.Module): | ||
"""Bilinear Pool | ||
implementation of Bilinear CNN (BCNN) | ||
https://arxiv.org/abs/1504.07889v5 | ||
Args: | ||
thresh: small positive number for computation stability | ||
is_vec: whether the output is a vector or not | ||
input_dim: the #channel of input feature | ||
""" | ||
def __init__(self, thresh=1e-8, is_vec=True, input_dim=2048): | ||
super(BCNN, self).__init__() | ||
self.thresh = thresh | ||
self.is_vec = is_vec | ||
self.output_dim = input_dim * input_dim | ||
def _bilinearpool(self, x): | ||
batchSize, dim, h, w = x.data.shape | ||
x = x.reshape(batchSize, dim, h * w) | ||
x = 1. / (h * w) * x.bmm(x.transpose(1, 2)) | ||
return x | ||
|
||
def _signed_sqrt(self, x): | ||
x = torch.mul(x.sign(), torch.sqrt(x.abs()+self.thresh)) | ||
return x | ||
|
||
def _l2norm(self, x): | ||
x = nn.functional.normalize(x) | ||
return x | ||
|
||
def forward(self, x): | ||
x = self._bilinearpool(x) | ||
x = self._signed_sqrt(x) | ||
if self.is_vec: | ||
x = x.view(x.size(0),-1) | ||
x = self._l2norm(x) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,79 @@ | ||
''' | ||
@file: CBP.py | ||
@author: Chunqiao Xu | ||
@author: Jiangtao Xie | ||
@author: Peihua Li | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
class CBP(nn.Module): | ||
"""Compact Bilinear Pooling | ||
implementation of Compact Bilinear Pooling (CBP) | ||
https://arxiv.org/pdf/1511.06062.pdf | ||
Args: | ||
thresh: small positive number for computation stability | ||
projDim: projected dimension | ||
input_dim: the #channel of input feature | ||
""" | ||
def __init__(self, thresh=1e-8, projDim=8192, input_dim=512): | ||
super(CBP, self).__init__() | ||
self.thresh = thresh | ||
self.projDim = projDim | ||
self.input_dim = input_dim | ||
self.output_dim = projDim | ||
torch.manual_seed(1) | ||
self.h_ = [ | ||
torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long), | ||
torch.randint(0, self.output_dim, (self.input_dim,),dtype=torch.long) | ||
] | ||
self.weights_ = [ | ||
(2 * torch.randint(0, 2, (self.input_dim,)) - 1).float(), | ||
(2 * torch.randint(0, 2, (self.input_dim,)) - 1).float() | ||
] | ||
|
||
indices1 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1), | ||
self.h_[0].reshape(1, -1)), dim=0) | ||
indices2 = torch.cat((torch.arange(input_dim, dtype=torch.long).reshape(1, -1), | ||
self.h_[1].reshape(1, -1)), dim=0) | ||
|
||
self.sparseM = [ | ||
torch.sparse.FloatTensor(indices1, self.weights_[0], torch.Size([self.input_dim, self.output_dim])).to_dense(), | ||
torch.sparse.FloatTensor(indices2, self.weights_[1], torch.Size([self.input_dim, self.output_dim])).to_dense(), | ||
] | ||
def _signed_sqrt(self, x): | ||
x = torch.mul(x.sign(), torch.sqrt(x.abs()+self.thresh)) | ||
return x | ||
|
||
def _l2norm(self, x): | ||
x = nn.functional.normalize(x) | ||
return x | ||
|
||
def forward(self, x): | ||
bsn = 1 | ||
batchSize, dim, h, w = x.data.shape | ||
x_flat = x.permute(0, 2, 3, 1).contiguous().view(-1, dim) # batchsize,h, w, dim, | ||
y = torch.ones(batchSize, self.output_dim, device=x.device) | ||
|
||
for img in range(batchSize // bsn): | ||
segLen = bsn * h * w | ||
upper = batchSize * h * w | ||
interLarge = torch.arange(img * segLen, min(upper, (img + 1) * segLen), dtype=torch.long) | ||
interSmall = torch.arange(img * bsn, min(upper, (img + 1) * bsn), dtype=torch.long) | ||
batch_x = x_flat[interLarge, :] | ||
|
||
sketch1 = batch_x.mm(self.sparseM[0].to(x.device)).unsqueeze(2) | ||
sketch1 = torch.fft(torch.cat((sketch1, torch.zeros(sketch1.size(), device=x.device)), dim=2), 1) | ||
|
||
sketch2 = batch_x.mm(self.sparseM[1].to(x.device)).unsqueeze(2) | ||
sketch2 = torch.fft(torch.cat((sketch2, torch.zeros(sketch2.size(), device=x.device)), dim=2), 1) | ||
|
||
Re = sketch1[:, :, 0].mul(sketch2[:, :, 0]) - sketch1[:, :, 1].mul(sketch2[:, :, 1]) | ||
Im = sketch1[:, :, 0].mul(sketch2[:, :, 1]) + sketch1[:, :, 1].mul(sketch2[:, :, 0]) | ||
|
||
tmp_y = torch.ifft(torch.cat((Re.unsqueeze(2), Im.unsqueeze(2)), dim=2), 1)[:, :, 0] | ||
|
||
y[interSmall, :] = tmp_y.view(torch.numel(interSmall), h, w, self.output_dim).sum(dim=1).sum(dim=1) | ||
|
||
y = self._signed_sqrt(y) | ||
y = self._l2norm(y) | ||
return y |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
''' | ||
@file: BCNN.py | ||
@author: Jiangtao Xie | ||
@author: Peihua Li | ||
''' | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class TRILINEAR(nn.Module): | ||
|
||
def __init__(self, input_dim=2048): | ||
super(TRILINEAR, self).__init__() | ||
#self.thresh = thresh | ||
#self.is_vec = is_vec | ||
self.output_dim = input_dim | ||
def _trilinearpool(self, x): | ||
batchSize, dim, h, w = x.data.shape | ||
x = x.reshape(batchSize, dim, h * w) | ||
#x = 1. / (h * w) * x.bmm(x.transpose(1, 2)) | ||
x_norm = F.softmax(dim=2) | ||
channel_relation = x_norm.bmm(x.transpose(1, 2)) #inter-channel relationship map | ||
#channel_relation = F.softmax(channel_relation) | ||
x = channel_relation.bmm(x) #trilinear attention map: b*c*(h*w) | ||
x = x.mean(2) | ||
return x | ||
|
||
#def _signed_sqrt(self, x): | ||
# x = torch.mul(x.sign(), torch.sqrt(x.abs()+self.thresh)) | ||
# return x | ||
|
||
#def _l2norm(self, x): | ||
# x = F.normalize(x) | ||
# return x | ||
|
||
def forward(self, x): | ||
x = self._trilinearpool(x) | ||
#x = self._signed_sqrt(x) | ||
#if self.is_vec: | ||
# x = x.view(x.size(0),-1) | ||
#x = self._l2norm(x) | ||
return x |