-
Notifications
You must be signed in to change notification settings - Fork 508
InsightFace: how to train 112*96
左庆 edited this page Sep 16, 2018
·
1 revision
(1)修改insightface\src\image_iter.py: def net_sample(sef) line124 return之前加一句img=img[:,8:104,:]
修改前
header, img = recordio.unpack(s)
return header.label, img, None, None
修改后
header, img = recordio.unpack(s)
img = img[:,8:104,:]#added by zuoqing
return header.label, img, None, None
(2)修改insightface\src\image_iter.py: def next(self) line215 self.postprocess_data(datum)之前加一句datum=datum[:,8:104,:]
修改前
#print(datum.shape)
batch_data[i][:] = self.postprocess_data(datum)
修改后
#print(datum.shape)
datum = datum[:,8:104,:]# added by zuoqing
batch_data[i][:] = self.postprocess_data(datum)
(3)修改datasets\faces_emore\property:112,112,改成了112,96 (同理,你用其他数据训练也得改)
(4)修改insightface\src\eval\verification.py: def load_bin(path,image_size) line193 tranpose之前加一句img=img[:,8:104,:]
修改前
img = mx.image.imdecode(_bin)
img = nd.transpose(img, axes=(2, 0, 1))
修改后
img = mx.image.imdecode(_bin)
img = img[:,8:104,:]#added by zuoqing
img = nd.transpose(img, axes=(2, 0, 1))
(5)修改insightface\src\symbols\symbol_utils.py里面get_fc1把kernel改成(7,6)
改完之后显存会少使用一些,可以使用更大的batch_size