Skip to content

zhiweibi/UA-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

UA-GAN

Uncertainty and Attention based GAN for multimodal image translation

Environment

python              3.8.10
pytorch             1.8.1
torchvision         0.9.1
tqdm                4.62.1
numpy               1.20.3
SimpleITK           2.1.0
scikit-learn        0.24.2
opencv-python       4.5.3.56
easydict            1.9
tensorboard         2.5.0
Pillow              8.3.1

Datasets

Download the datasets from the official way and rearrange the files to the following structure. The dataset path can be modified in the UA-GAN/options/*.yaml file.

BraTS2020

MICCAI_BraTS2020_TrainingData
├── flair
│   ├── BraTS20_Training_001_flair.nii.gz
│   ├── BraTS20_Training_002_flair.nii.gz
│   ├── BraTS20_Training_003_flair.nii.gz
│   ├── ...
├── t2
│   ├── BraTS20_Training_001_t2.nii.gz
│   ├── BraTS20_Training_002_t2.nii.gz
│   ├── BraTS20_Training_003_t2.nii.gz
│   ├── ...
├── t1
│   ├── BraTS20_Training_001_t1.nii.gz
│   ├── BraTS20_Training_002_t1.nii.gz
│   ├── BraTS20_Training_003_t1.nii.gz
│   ├── ...
├── t1ce
│   ├── BraTS20_Training_001_t1ce.nii.gz
│   ├── BraTS20_Training_002_t1ce.nii.gz
│   ├── BraTS20_Training_003_t1ce.nii.gz
│   ├── ...

RaFD

For RaFD dataset, you just need to follow the original dataset with the image name like 'Rafd090_01_Caucasian_female_angry_frontal.jpg'. We only select the images shooting from frontal direction (Rafd090) for training and testing.

Train

Edit the .yaml file of the corresponding dataset for training configuration and run the following command to train our model.

python train.py options/brats.yaml

Test

Edit the .yaml file of the corresponding dataset for testing configuration and run the following command to test.

python test.py options/brats.yaml

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages