Seiji Zenitani, Research Center for Urban Safety and Security, Kobe University, Japan
Originally developed by Komei Sugiura, National Institute of Information and Communications Technology, Japan https://github.com/komeisugiura/defn18.git
- BSD 3-Clause Clear License
- Ubuntu 22.04 LTS
- Python 3.9
- numpy, pandas, scikit-learn (sklearn)
- tensorflow 2
- In the following procedure,
~/work
is assumed to be used as a working directory.
$ cd ~/work/
$ git clone https://github.com/zenitani/defn18.git
$ cd defn18
$ pip3 install tensorflow
[ $ pip3 install tensorflow numpy pandas sklearn ]
- Visit
http://wdc.nict.go.jp/IONO/wdc/solarflare/index.html
and downloaddefn_feature_database_v1_pl.zip
.
$ cd ~/work/
$ mv defn_feature_database_v1_pl.zip ./
$ unzip defn_feature_database_v1_pl.zip
(password is required)
$ cp defn_feature_database_v1/defn_input_database/charval2017X_*.csv.gz ./defn18/data/
$ cd ~/work/defn18/src
$ ./deepflarenet.py
- The following result will be shown. This means that TSS=0.8024 is obtained by using a pretrained model.
[008000]Acc: Tra=0.8345, Val=0.8584, Tes=0.8584, MaxVal=0.8584(0.8584), TSS=0.8024
Modify src/deepflarenet.py
.
-
Uncomment the following line to train the model
# net1.train_model(update_interval=100)
-
Uncomment the following line to save the trained model. Current model is overwritten.
# net1.save_model(myflag.outfile_model)
-
Comment the following two lines out, if you don't like to load the model
net1.load_model(myflag.infile_model)
net1.show_training_status(epoch=8000)
- N. Nishizuka, K. Sugiura, Y. Kubo, M. Den, and M. Ishii, "Deep Flare Net (DeFN) Model for Solar Flare Prediction", The Astrophysical Journal, Vol. 858, Issue 2, 113 (8pp), 2018. DOI: 10.3847/1538-4357/aab9a7