-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
L6T1: Test code and set up CI tests (#10)
* training code as script * test code * install dev reqi * add CI step * fix python version * fix path to * change app path * split tests and publish * add nessesary init files * fix path to tests * add missing deps * add wandb
- Loading branch information
1 parent
f267c07
commit 3f001a6
Showing
6 changed files
with
158 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,3 +1,10 @@ | ||
ipykernel==6.28.0 | ||
wandb==0.16.1 | ||
-r requirements.txt | ||
|
||
evaluate==0.4.1 | ||
great-expectations==0.18.7 | ||
pytest==7.4.4 | ||
scikit-learn==1.3.2 | ||
accelerate==0.25.0 | ||
datasets==2.16.1 | ||
wandb==0.16.1 | ||
ipykernel==6.28.0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import argparse | ||
import numpy as np | ||
from datasets import load_dataset | ||
from transformers import (BertForSequenceClassification, BertTokenizer, TrainingArguments, Trainer) | ||
from transformers import DataCollatorWithPadding | ||
import evaluate | ||
import wandb | ||
|
||
MODEL_NAME = "bert-base-uncased" | ||
SEED = 42 | ||
TRAIN_SIZE = 8000 | ||
EVAL_SIZE = 2000 | ||
DATASET_NAME = "GonzaloA/fake_news" | ||
|
||
def parse_args(args=None): | ||
parser = argparse.ArgumentParser(description="Train BERT for sequence classification.") | ||
parser.add_argument('--train_size', type=int, default=TRAIN_SIZE, | ||
help='Number of samples to use for training') | ||
parser.add_argument('--eval_size', type=int, default=EVAL_SIZE, | ||
help='Number of samples to use for evaluation') | ||
return parser.parse_args(args=None) | ||
|
||
def load_data(dataset_name=DATASET_NAME): | ||
"""Loads a dataset using Huggingface's datasets library.""" | ||
dataset = load_dataset(dataset_name) | ||
|
||
wandb.log({"dataset": dataset_name}) | ||
|
||
return dataset | ||
|
||
def tokenize_data(tokenizer, dataset, padding=True, truncation=True, max_length=512): | ||
def tokenize_function(examples): | ||
return tokenizer(examples["text"], padding=padding, truncation=truncation, max_length=max_length) | ||
|
||
return dataset.map(tokenize_function, batched=True) | ||
|
||
def configure_training_args(output_dir="test_trainer"): | ||
"""Sets up the training arguments for the Trainer.""" | ||
return TrainingArguments( | ||
output_dir=output_dir, | ||
evaluation_strategy="epoch", | ||
save_strategy="epoch", | ||
logging_dir=f"{output_dir}/logs", # directory for storing logs | ||
logging_steps=10, | ||
seed=SEED, | ||
) | ||
|
||
def compute_metrics(eval_pred): | ||
"""Computes accuracy of the model predictions.""" | ||
logits, labels = eval_pred | ||
predictions = np.argmax(logits, axis=-1) | ||
return evaluate.load("accuracy").compute(predictions=predictions, references=labels) | ||
|
||
def prepare_datasets(tokenized_datasets, args): | ||
"""Prepare the training and evaluation datasets from tokenized data.""" | ||
train_dataset = tokenized_datasets.select(range(args.train_size)) | ||
eval_dataset = tokenized_datasets.select(range(args.train_size, args.train_size + args.eval_size)) | ||
return train_dataset, eval_dataset | ||
|
||
def train_model(model, tokenizer, train_dataset, eval_dataset): | ||
"""Initialize the Trainer and train the model.""" | ||
training_args = configure_training_args() | ||
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | ||
|
||
trainer = Trainer( | ||
model=model, | ||
args=training_args, | ||
train_dataset=train_dataset, | ||
eval_dataset=eval_dataset, | ||
compute_metrics=compute_metrics, | ||
data_collator=data_collator, | ||
) | ||
|
||
trainer.train() | ||
return trainer | ||
|
||
def initialize_wandb(args): | ||
"""Initialize Weights & Biases.""" | ||
wandb.init(project="bert_fake_news_classification", entity="your_wandb_username", config=args) | ||
|
||
def save_model_and_tokenizer(trainer, tokenizer, path="./model_checkpoint"): | ||
"""Save the trained model and tokenizer.""" | ||
trainer.save_model(path) | ||
tokenizer.save_pretrained(path) | ||
return path | ||
|
||
def log_to_wandb(dataset_name, artifact_path): | ||
"""Log dataset and model artifact to Weights & Biases.""" | ||
wandb.log({"dataset": dataset_name}) | ||
wandb.log_artifact(artifact_path, type="model", name="bert_fake_news_classifier") | ||
|
||
def finish_wandb(): | ||
"""Finish the Weights & Biases run.""" | ||
wandb.finish() | ||
|
||
def main(): | ||
args = parse_args() | ||
initialize_wandb(args) | ||
|
||
datasets = load_data() | ||
small_train_dataset = datasets["train"].shuffle(seed=SEED).select(range(args.train_size + args.eval_size)) | ||
model = BertForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=2) | ||
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME) | ||
|
||
tokenized_datasets = tokenize_data(tokenizer, small_train_dataset) | ||
tokenized_datasets = tokenized_datasets.remove_columns(["text"]) | ||
|
||
train_dataset, eval_dataset = prepare_datasets(tokenized_datasets, args) | ||
trainer = train_model(model, tokenizer, train_dataset, eval_dataset) | ||
|
||
artifact_path = save_model_and_tokenizer(trainer, tokenizer) | ||
log_to_wandb(DATASET_NAME, artifact_path) | ||
finish_wandb() | ||
|
||
if __name__ == "__main__": | ||
main() |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
import numpy as np | ||
from src.model.training import compute_metrics | ||
|
||
def test_compute_metrics(): | ||
mock_logits = np.array([[2, 0.1], [0.1, 2], [2, 0.1]]) | ||
mock_labels = np.array([0, 1, 0]) | ||
|
||
output = compute_metrics((mock_logits, mock_labels)) | ||
|
||
expected_accuracy = 1.0 | ||
assert output['accuracy'] == expected_accuracy, f"Expected accuracy: {expected_accuracy}, but got: {output['accuracy']}" |