-
Notifications
You must be signed in to change notification settings - Fork 1
/
method_configs.py
510 lines (484 loc) · 22.2 KB
/
method_configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Put all the method implementations in one location.
"""
# Modified by Tianyuan Yuan, 2024
# Support PreSight
from __future__ import annotations
from collections import OrderedDict
from typing import Dict
from pathlib import Path
import math
import copy
import tyro
from nerfstudio.data.pixel_samplers import PairPixelSamplerConfig
from nerfstudio.cameras.camera_optimizers import CameraOptimizerConfig
from nerfstudio.configs.base_config import ViewerConfig, MachineConfig
from nerfstudio.configs.external_methods import get_external_methods
from nerfstudio.data.datamanagers.random_cameras_datamanager import RandomCamerasDataManagerConfig
from nerfstudio.data.datamanagers.base_datamanager import VanillaDataManager, VanillaDataManagerConfig
from nerfstudio.data.dataparsers.blender_dataparser import BlenderDataParserConfig
from nerfstudio.data.dataparsers.dnerf_dataparser import DNeRFDataParserConfig
from nerfstudio.data.dataparsers.instant_ngp_dataparser import InstantNGPDataParserConfig
from nerfstudio.data.dataparsers.nerfstudio_dataparser import NerfstudioDataParserConfig
from nerfstudio.data.dataparsers.phototourism_dataparser import PhototourismDataParserConfig
from nerfstudio.data.dataparsers.sdfstudio_dataparser import SDFStudioDataParserConfig
from nerfstudio.data.dataparsers.sitcoms3d_dataparser import Sitcoms3DDataParserConfig
from nerfstudio.data.dataparsers.nuscenes_dataparser import NuScenesDataParserConfig
from nerfstudio.data.datasets.depth_dataset import DepthDataset
from nerfstudio.data.datasets.sdf_dataset import SDFDataset
from nerfstudio.data.datasets.semantic_dataset import SemanticDataset
from nerfstudio.engine.optimizers import AdamOptimizerConfig, RAdamOptimizerConfig
from nerfstudio.engine.schedulers import (
CosineDecaySchedulerConfig,
ExponentialDecaySchedulerConfig,
MultiStepSchedulerConfig,
)
from nerfstudio.engine.my_schedulers import WarmupMultiStepSchedulerConfig
from nerfstudio.engine.trainer import TrainerConfig
from nerfstudio.models.PreSight.nerfacto_nusc_ms import NerfactoNuscMSModelConfig
from nerfstudio.pipelines.PreSight.my_pipeline import MyPipelineConfig
from nerfstudio.plugins.registry import discover_methods
from nerfstudio.data.PreSight.my_datamanager import MyDataManagerConfig
from nerfstudio.data.PreSight.mynuscenes_ms_dataparser import MyNuScenesMSDataParserConfig
from nerfstudio.data.PreSight.constants import FEATURES, RGB, DEPTH, SEG, MASK
method_configs: Dict[str, TrainerConfig] = {}
descriptions = {}
data_root = Path("path/to/your/nuScenes/")
pose_rescale_factor = 0.05
bs_scale = 8
max_iterations = 100000
for i in range(8):
name = f"boston-seaport-monodepth-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="boston-seaport-monodepth",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="boston-seaport",
centroid_name=str(i),
num_aabbs=16,
use_gt_masks=False,
depth_type="monodepth",
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
use_monodepth_loss=True,
expected_depth_loss_mult=0.1,
line_of_sight_mult=0.01,
monodepth_depth_upperbound=25.0,
line_of_sight_decay_steps=max_iterations,
line_of_sight_start_step=max_iterations//20,
line_of_sight_end_step=max_iterations,
line_of_sight_max_sigma=6.0,
line_of_sight_min_sigma=4.0,
distortion_loss_mult=0.01,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
name = f"boston-seaport-camera-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="boston-seaport-camera",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="boston-seaport",
centroid_name=str(i),
num_aabbs=16,
use_gt_masks=False,
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
for i in range(4):
name = f"singapore-queenstown-monodepth-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-queenstown-monodepth",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-queenstown",
centroid_name="2",
num_aabbs=12,
use_gt_masks=False,
depth_type="monodepth",
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
use_monodepth_loss=True,
expected_depth_loss_mult=0.1,
line_of_sight_mult=0.01,
monodepth_depth_upperbound=25.0,
line_of_sight_decay_steps=max_iterations,
line_of_sight_start_step=max_iterations//20,
line_of_sight_end_step=max_iterations,
line_of_sight_max_sigma=6.0,
line_of_sight_min_sigma=4.0,
distortion_loss_mult=0.01,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
name = f"singapore-queenstown-camera-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-queenstown-camera",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-queenstown",
centroid_name=str(i),
num_aabbs=12,
use_gt_masks=False,
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
for i in range(4):
name = f"singapore-onenorth-monodepth-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-onenorth-monodepth",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-onenorth",
centroid_name=str(i),
num_aabbs=16,
use_gt_masks=False,
depth_type="monodepth",
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
use_monodepth_loss=True,
expected_depth_loss_mult=0.1,
line_of_sight_mult=0.01,
monodepth_depth_upperbound=25.0,
line_of_sight_decay_steps=max_iterations,
line_of_sight_start_step=max_iterations//20,
line_of_sight_end_step=max_iterations,
line_of_sight_max_sigma=6.0,
line_of_sight_min_sigma=4.0,
distortion_loss_mult=0.01,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
name = f"singapore-onenorth-camera-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-onenorth-camera",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-onenorth",
centroid_name=str(i),
num_aabbs=16,
use_gt_masks=False,
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
for i in range(2):
name = f"singapore-hollandvillage-monodepth-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-hollandvillage-monodepth",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-hollandvillage",
centroid_name=str(i),
num_aabbs=8,
use_gt_masks=False,
depth_type="monodepth",
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
use_monodepth_loss=True,
expected_depth_loss_mult=0.1,
line_of_sight_mult=0.01,
monodepth_depth_upperbound=25.0,
line_of_sight_decay_steps=max_iterations,
line_of_sight_start_step=max_iterations//20,
line_of_sight_end_step=max_iterations,
line_of_sight_max_sigma=6.0,
line_of_sight_min_sigma=4.0,
distortion_loss_mult=0.01,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
name = f"singapore-hollandvillage-camera-dino-c{i}"
method_configs[name] = TrainerConfig(
output_dir=Path("./outputs"),
experiment_name=name,
method_name="singapore-hollandvillage-camera",
max_num_iterations=max_iterations,
pipeline=MyPipelineConfig(
datamanager=MyDataManagerConfig(
dataparser=MyNuScenesMSDataParserConfig(
location="singapore-hollandvillage",
centroid_name=str(i),
num_aabbs=8,
use_gt_masks=False,
data_dir=data_root,
),
train_num_rays_per_batch=8192*bs_scale,
),
model=NerfactoNuscMSModelConfig(
near_plane=0.1*pose_rescale_factor,
far_plane=1000.0*pose_rescale_factor,
piecewise_sampler_threshold=100.0*pose_rescale_factor,
proposal_weights_anneal_max_num_iters=max_iterations//10,
proposal_warmup=max_iterations//10,
use_lidar_loss=False,
),
),
optimizers={
"proposal_networks": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
"fields": {
"optimizer": AdamOptimizerConfig(lr=1e-2, eps=1e-15, weight_decay=1e-5),
"scheduler": WarmupMultiStepSchedulerConfig(max_steps=max_iterations,
milestones=[max_iterations//4, max_iterations//2, max_iterations*3//4],
warmup_steps=max_iterations//10),
},
},
vis="viewer+wandb",
)
def merge_methods(methods, method_descriptions, new_methods, new_descriptions, overwrite=True):
"""Merge new methods and descriptions into existing methods and descriptions.
Args:
methods: Existing methods.
method_descriptions: Existing descriptions.
new_methods: New methods to merge in.
new_descriptions: New descriptions to merge in.
Returns:
Merged methods and descriptions.
"""
methods = OrderedDict(**methods)
method_descriptions = OrderedDict(**method_descriptions)
for k, v in new_methods.items():
if overwrite or k not in methods:
methods[k] = v
method_descriptions[k] = new_descriptions.get(k, "")
return methods, method_descriptions
def sort_methods(methods, method_descriptions):
"""Sort methods and descriptions by method name."""
methods = OrderedDict(sorted(methods.items(), key=lambda x: x[0]))
method_descriptions = OrderedDict(sorted(method_descriptions.items(), key=lambda x: x[0]))
return methods, method_descriptions
all_methods, all_descriptions = method_configs, descriptions
# Add discovered external methods
all_methods, all_descriptions = merge_methods(all_methods, all_descriptions, *discover_methods())
all_methods, all_descriptions = sort_methods(all_methods, all_descriptions)
# Register all possible external methods which can be installed with Nerfstudio
all_methods, all_descriptions = merge_methods(
all_methods, all_descriptions, *sort_methods(*get_external_methods()), overwrite=False
)
AnnotatedBaseConfigUnion = tyro.conf.SuppressFixed[ # Don't show unparseable (fixed) arguments in helptext.
tyro.conf.FlagConversionOff[
tyro.extras.subcommand_type_from_defaults(defaults=all_methods, descriptions=all_descriptions)
]
]
"""Union[] type over config types, annotated with default instances for use with
tyro.cli(). Allows the user to pick between one of several base configurations, and
then override values in it."""