Skip to content

yanghtr/GenCorres

Repository files navigation

GenCorres

Code for ICLR 2024 paper: GenCorres: Consistent Shape Matching via Coupled Implicit-Explicit Shape Generative Models.

A cleaner version of the code for training the implicit generator is in the Supplementary Material.

Dataset

We use the data processing code of SALD. The processed dataset is in this link.

Unzip the dataset:

.
├── DFAUST
│   ├── registrations
│   └── registrations_processed_sal_sigma03
└── SMAL
    ├── registrations
    └── registrations_processed_sal_sigma03

Change the data_dir in the config file (e.g. ./config/dfaust/ivae_dfaustJSM1k.yaml).

Below we show the example of JSM for the DFAUST dataset (1k shapes). Pretrained model is in work_dir.zip.

Stage 1

Train the implicit network with regularization to fit the input shapes:

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 main.py --launcher pytorch --config ./config/dfaust/ivae_dfaustJSM1k.yaml --mode train --rep sdf # (--continue_from 2999)

To visualize the interpolation of a pair of shapes in the shape space:

CUDA_VISIBLE_DEVICES=0 python main.py --config ./config/dfaust/ivae_dfaustJSM1k.yaml --mode interp --rep sdf --continue_from 6499 --split train --interp_src_fid 50009-running_on_spot-running_on_spot.000366 --interp_tgt_fid 50002-chicken_wings-chicken_wings.004011

Stage 2

Latent space interpolation

Generate latents for each shape

CUDA_VISIBLE_DEVICES=0 python main.py --config ./config/dfaust/ivae_dfaustJSM1k.yaml --mode analysis --rep sdf --continue_from 6499 --split test

The outputs are latents_all_test_6499.npy and latents_all_test_6499.pkl in work_dir/dfaust/ivae_dfaustJSM1k/results/test/analysis_sdf.

Create KNN graph

Create a KNN graph according to the latents, also add edges from the template to all the remaining shapes.

cd ./registration_dfaust
python gen_edges.py --epoch 6499 --split test --data_root ../work_dir/dfaust/ivae_dfaustJSM1k/results/test/analysis_sdf/

The outputs are: work_dir/dfaust/ivae_dfaustJSM1k/results/test/analysis_sdf/edge_ids/test_6499_edge_ids_K25.npy.

Interpolate shapes according to edge_ids

The command is in interp/batch_interp.sh. We utilize HTCondor to accelerate the execution.

condor_submit interp/condor.sh

The outputs are in: work_dir/dfaust/ivae_dfaustJSM1k/results/test/interp_edges_sdf/6499/. Each folder stores the interpolation results of a pair of shapes.

Nonrigid registration between pairs

Prepare data for MATLAB

cd ./registration_dfaust
python preprocess_registration_data.py

The outputs are:

├── mesh_raw   # raw mesh
├── mesh_sim   # simplified mesh, each about 1k vertices
└── meta_test_6499_K5.mat # edge_ids and fids

Nonrigid registration

We use MATLAB to solve the following optimization problem:

Energy = L_point2point * beta + L_point2plane * (1 - beta) + lambda * L_arap

To utilize HTCondor to accelerate the execution:

cd ./registration_dfaust/multiCorres_sync_dfaust1k
condor_submit condor.sh

The registered meshes are in: ./dfaust1k/mesh_def

Propagate correspondences for initialization

cd ./registration_dfaust
python gen_graph.py --epoch 6499 --split test --edge_ids_path ../work_dir/dfaust/ivae_dfaustJSM1k/results/test/analysis_sdf/edge_ids/test_6499_edge_ids_K25.npy

The outputs are in: ./dfaust1k/mesh_corres/

Stage 3

Initialize the mesh generator

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config ./config/dfaust/admesh_dfaustJSM1k.yaml --rep mesh --mode train --data_parallel

Refinement

After training 999 epochs, change the hyperparameter mesh_arap_weight in the yaml file to 0.001 and resume training:

CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py --config ./config/dfaust/admesh_dfaustJSM1k.yaml --rep mesh --mode train --data_parallel  --continue_from 999 --batch_size 28

Stop training at epoch 1500. To generate the final correspondences:

python main.py --config ./config/dfaust/admesh_dfaustJSM1k.yaml --rep mesh --mode eval --continue_from 1499 --split train --parallel_idx 0 --parallel_interval 1000

The outputs are in work_dir/dfaust/ivae_dfaustJSM1k/results/train/eval_mesh.

Contact

If you have any questions, you can contact Haitao Yang (yanghtr [AT] outlook [DOT] com).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published