Skip to content

Commit

Permalink
Deployed 2bc042b with MkDocs version: 1.5.3
Browse files Browse the repository at this point in the history
  • Loading branch information
[email protected] committed Apr 24, 2024
1 parent a7b85c5 commit 57172f6
Show file tree
Hide file tree
Showing 3 changed files with 62 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -2627,12 +2627,73 @@ <h1 id="nku">NKU 第六次作业</h1>
<p>说明如果 <span class="arithmatex">\(\gamma&gt;0\)</span> ,那么 <span class="arithmatex">\(\alpha&lt; \beta\)</span> 可推得 <span class="arithmatex">\(\gamma\cdot \alpha&lt; \gamma\cdot \beta\)</span><span class="arithmatex">\(\alpha\cdot \gamma \leqslant \beta\cdot \gamma\)</span> ,并给出一个例子说明 <span class="arithmatex">\(\leqslant\)</span> 不能替换为 <span class="arithmatex">\(&lt;\)</span> ,并证明:<br />
$$ (\alpha \leqslant \beta \land \alpha&gt;0)\to \exists ! \delta, \xi(\xi&lt;\alpha \land \alpha\cdot \delta + \xi = \beta). $$</p>
</div>
<p>利用超限归纳法,对 <span class="arithmatex">\(\beta\)</span> 应用,<span class="arithmatex">\(\beta=0\)</span> 时自然成立. 归纳假设为:<span class="arithmatex">\(\alpha&lt; \beta\)</span> ,且对任意的 <span class="arithmatex">\(\delta&lt; \beta\)</span> ,均有 <span class="arithmatex">\(\gamma\cdot \alpha&lt; \gamma\cdot \delta\)</span> .</p>
<p><span class="arithmatex">\(\beta\)</span> 为后继序数时,<span class="arithmatex">\(\beta = \delta+1\)</span> ,有 <span class="arithmatex">\(\alpha \leqslant \delta\)</span> ,故</p>
<div class="arithmatex">\[
\gamma \cdot \alpha \leqslant \gamma\cdot \delta &lt; \gamma \cdot \delta+ \gamma\cdot 1 = \gamma \cdot ( \delta +1) = \gamma\cdot \beta
\]</div>
<p>其中运用了乘法的左分配律.</p>
<p><span class="arithmatex">\(\beta\)</span> 为极限序数的时候,</p>
<div class="arithmatex">\[
\gamma\cdot \alpha &lt; \gamma\cdot \alpha + \gamma \cdot 1 \leqslant \sup\left\lbrace \gamma\cdot \delta ,\delta&lt; \beta \right\rbrace = \gamma\cdot \beta
\]</div>
<p>因此由超限归纳法可知成立. </p>
<p>对于 <span class="arithmatex">\(\alpha \cdot \gamma \leqslant \beta \cdot \gamma\)</span> ,归纳法类似,但是在 <span class="arithmatex">\(\gamma\)</span> 充分大的时候,就会出现问题,例如 <span class="arithmatex">\(1&lt;2\)</span> ,但是</p>
<div class="arithmatex">\[
1\cdot \omega = \omega = 2\cdot \omega
\]</div>
<p>从而等号不能去掉. </p>
<p>对于最后的语句,<span class="arithmatex">\(\alpha=\beta\)</span> 时,取 <span class="arithmatex">\(\delta=1,\xi=0\)</span> 即可. 当 <span class="arithmatex">\(\alpha&lt; \beta\)</span> 时,考虑 <span class="arithmatex">\(\beta\)</span> 为极限序数时,<span class="arithmatex">\(\xi=0\)</span> ,当 <span class="arithmatex">\(\beta\)</span> 为后继序数时,它是一个极限序数的有限次后继,利用 T1 结论可以得出 <span class="arithmatex">\(\xi\)</span> ,因此只需讨论 <span class="arithmatex">\(\alpha\cdot \delta = \beta\)</span><span class="arithmatex">\(\beta\)</span> 为极限序数的情形. 考虑利用如下的引理:</p>
<blockquote>
<p>对于任意序数 <span class="arithmatex">\(\alpha,\beta\)</span><br />
$$ \alpha\cdot \beta = \left\lbrace \alpha\cdot \xi + \eta \mid \xi&lt; \beta\land \eta &lt; \alpha \right\rbrace $$</p>
</blockquote>
<hr />
<p><strong>引理的证明</strong><br />
<span class="arithmatex">\(\beta\)</span> 使用超限归纳法:<span class="arithmatex">\(\beta=0\)</span> 时结论显然成立. <span class="arithmatex">\(\beta\)</span> 为后继序数时,设 <span class="arithmatex">\(\beta = \gamma+1\)</span> ,从而利用归纳假设有</p>
<div class="arithmatex">\[
\begin{aligned}
\alpha\cdot \beta &amp; = \alpha \cdot (\gamma+1) \\
&amp; = \alpha\cdot \gamma + \alpha \\
&amp; = \left\lbrace \alpha\cdot \xi+ \eta \mid \xi&lt; \gamma \land \eta &lt; \alpha \right\rbrace \cup \left\lbrace \alpha\cdot \gamma + \delta \mid \delta &lt; \alpha \right\rbrace \\
&amp; = \left\lbrace \alpha\cdot \xi + \eta\mid \xi &lt; \beta \land \eta &lt; \alpha \right\rbrace
\end{aligned}
\]</div>
<p>因此后继序数的情形成立.</p>
<p><span class="arithmatex">\(\beta\)</span> 为极限序数时,有</p>
<div class="arithmatex">\[
\begin{aligned}
\alpha\cdot \beta &amp; = \bigcup_{\delta &lt; \beta, \gamma &lt; \alpha} (\alpha\cdot \delta + \gamma) \\
&amp; = \left\lbrace \alpha\cdot \xi + \eta \mid \xi &lt; \beta\land \eta &lt; \alpha \right\rbrace
\end{aligned}
\]</div>
<p>极限序数的情形成立.</p>
<hr />
<p>根据引理可得存在性,对于唯一性,假设有</p>
<div class="arithmatex">\[
\alpha\cdot \xi_1 + \eta_1 = \alpha\cdot \xi_2 + \eta_2 = \beta
\]</div>
<p>如果 <span class="arithmatex">\(\xi_1=\xi_2\)</span> ,那么根据加法的性质可得 <span class="arithmatex">\(\eta_1=\eta_2\)</span> . 如果 <span class="arithmatex">\(\xi_1\neq \xi_2\)</span> ,不妨设 <span class="arithmatex">\(\xi_1 &lt; \xi_2\)</span> ,那么 <span class="arithmatex">\(\xi_1 +1 \leqslant \xi_2\)</span> ,从而</p>
<div class="arithmatex">\[
\alpha\cdot (\xi_1+1)+ \eta_2 \leqslant \alpha\cdot \xi_2 +\eta_2 = \beta = \alpha\cdot \xi_1 + \eta_1
\]</div>
<p><span class="arithmatex">\(\alpha+\eta_2 \leqslant \eta_1\)</span> ,这和 <span class="arithmatex">\(\eta_1 &lt; \alpha\)</span> 是矛盾的. 故唯一性成立. <span class="arithmatex">\(\square\)</span></p>
<div class="admonition question">
<p class="admonition-title">T3</p>
<p>证明 Cantor 序数正则形式定理:对于每个非 <span class="arithmatex">\(0\)</span> 的序数 <span class="arithmatex">\(\alpha\)</span> ,它们均可表为如下的形式:<br />
$$ \alpha = \omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot l_n $$<br />
其中 <span class="arithmatex">\(1 \leqslant n &lt; \omega,\alpha \geqslant \beta_1 &gt; \cdots &gt; \beta_n\)</span> ,且 <span class="arithmatex">\(1\leqslant l_i&lt; \omega,i=1,\cdots,n\)</span> ,更进一步,这个表示形式是唯一的.</p>
</div>
<p><span class="arithmatex">\(\alpha\)</span> 使用超限归纳法,当 <span class="arithmatex">\(\alpha=1\)</span> 时,有 <span class="arithmatex">\(\alpha = \omega^0\)</span> . 对 <span class="arithmatex">\(\alpha\)</span> 为后继序数的情形,设</p>
<div class="arithmatex">\[
\alpha= \gamma+1 = \omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot l_n +1 = \omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot l_n+ \omega^0\cdot 1
\]</div>
<p>从而后继序数的情形成立,对于 <span class="arithmatex">\(\alpha\)</span> 为极限序数的情形,取最大的 <span class="arithmatex">\(\beta\)</span> 使得 <span class="arithmatex">\(\omega^\beta \leqslant \alpha\)</span> ,根据 T2 结论,存在唯一的 <span class="arithmatex">\(\delta\)</span><span class="arithmatex">\(\eta\)</span> 使得 <span class="arithmatex">\(\alpha = \omega^\beta\cdot \delta+ \eta\)</span> .而根据归纳假设,<span class="arithmatex">\(\eta\)</span> 可写为 Cantor 正则形式,故 <span class="arithmatex">\(\alpha\)</span> 此时可写为 Cantor 正则形式. 因此该形式的存在性成立.</p>
<p>对于唯一性,当 <span class="arithmatex">\(\alpha = 1\)</span> 时,<span class="arithmatex">\(\alpha=\omega^0\)</span> 显然是唯一的,<span class="arithmatex">\(\alpha\)</span> 为后继序数的情形,<span class="arithmatex">\(\alpha = \gamma+1\)</span> 由归纳假设有 <span class="arithmatex">\(\gamma\)</span> 的正则形式唯一,从而 <span class="arithmatex">\(\alpha\)</span> 的正则形式唯一地为:</p>
<div class="arithmatex">\[
\alpha= \gamma+1 = \omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot l_n +1 = \omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot l_n+ \omega^0\cdot 1
\]</div>
<p><span class="arithmatex">\(\beta_n = 0\)</span> 时,后式还可进一步写为 <span class="arithmatex">\(\omega^{\beta_1}\cdot l_1+\cdots + \omega^{\beta_n}\cdot (l_n+1)\)</span> . 因此后继序数的唯一性成立. 最后极限序数的情形,存在性的证明中,利用 T2 的结论可知 <span class="arithmatex">\(\delta\)</span><span class="arithmatex">\(\eta\)</span> 是唯一的,而 <span class="arithmatex">\(\eta\)</span> 根据归纳假设可知正则形式唯一,于是表示形式唯一. <span class="arithmatex">\(\square\)</span></p>



Expand Down
2 changes: 1 addition & 1 deletion search/search_index.json

Large diffs are not rendered by default.

Binary file modified sitemap.xml.gz
Binary file not shown.

0 comments on commit 57172f6

Please sign in to comment.