Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Allow classifier to label ranges #269

Merged
merged 6 commits into from
Oct 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
36 changes: 33 additions & 3 deletions ecoscope/analysis/classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,19 +25,36 @@

# pass in a dataframe and output a series
def apply_classification(
dataframe, input_column_name, output_column_name=None, labels=None, scheme="natural_breaks", **kwargs
dataframe,
input_column_name,
output_column_name=None,
labels=None,
scheme="natural_breaks",
label_prefix="",
label_suffix="",
label_ranges=False,
label_decimals=1,
**kwargs,
):
"""
Classifies the data in a GeoDataFrame column using specified classification scheme.
Classifies the data in a DataFrame column using specified classification scheme.

Args:
dataframe (pd.DatFrame): The data.
input_column_name (str): The dataframe column to classify.
output_column_name (str): The dataframe column that will contain the classification.
output_column_names (str): The dataframe column that will contain the classification.
Defaults to "<input_column_name>_classified"
labels (list[str]): labels of bins, use bin edges if labels==None.
scheme (str): Classification scheme to use [equal_interval, natural_breaks, quantile, std_mean, max_breaks,
fisher_jenks]
label_prefix (str): Prepends provided string to each label
label_suffix (str): Appends provided string to each label
label_ranges (bool): Applicable only when 'labels' is not set
If True, generated labels will be the range between bin edges,
rather than the bin edges themselves.
label_decimals (int): Applicable only when 'labels' is not set
Specifies the number of decimal places in the label


**kwargs:
Additional keyword arguments specific to the classification scheme, passed to mapclassify.
Expand Down Expand Up @@ -75,7 +92,20 @@ def apply_classification(
classifier = classifier_class(dataframe[input_column_name].to_numpy(), **kwargs)
if labels is None:
labels = classifier.bins

if label_ranges:
# We could do this using mapclassify.get_legend_classes, but this generates a cleaner label
ranges = [f"{dataframe[input_column_name].min():.{label_decimals}f} - {labels[0]:.{label_decimals}f}"]
ranges.extend(
[f"{labels[i]:.{label_decimals}f} - {labels[i + 1]:.{label_decimals}f}" for i in range(len(labels) - 1)]
)
labels = ranges
else:
labels = [round(label, label_decimals) for label in labels]

assert len(labels) == len(classifier.bins)
if label_prefix or label_suffix:
labels = [f"{label_prefix}{label}{label_suffix}" for label in labels]
dataframe[output_column_name] = [labels[i] for i in classifier.yb]
return dataframe

Expand Down
26 changes: 25 additions & 1 deletion tests/test_classifier.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ def sample_df():
(
"std_mean",
{"multiples": [-2, -1, 1, 2]},
[1.4188611699158102, 4.58113883008419, 4.58113883008419, 4.58113883008419, 6.16227766016838],
[1.4, 4.6, 4.6, 4.6, 6.2],
),
("max_breaks", {"k": 4}, [2.5, 2.5, 3.5, 4.5, 5.0]),
("fisher_jenks", {"k": 5}, [1.0, 2.0, 3.0, 4.0, 5.0]),
Expand All @@ -38,6 +38,19 @@ def test_classify_with_labels(sample_df):
assert result["value_classified"].values.tolist() == ["1", "1", "1", "2", "2"]


def test_classify_with_labels_prefix_suffix(sample_df):
result = apply_classification(
sample_df,
input_column_name="value",
labels=["1", "2"],
label_prefix="_",
label_suffix="_",
scheme="equal_interval",
k=2,
)
assert result["value_classified"].values.tolist() == ["_1_", "_1_", "_1_", "_2_", "_2_"]


def test_classify_with_invalid_labels(sample_df):
with pytest.raises(AssertionError):
apply_classification(sample_df, input_column_name="value", labels=[0], scheme="std_mean")
Expand Down Expand Up @@ -104,3 +117,14 @@ def test_apply_colormap_cmap_user_defined_bad(movebank_relocations):

with pytest.raises(AssertionError):
apply_color_map(classified, "speed_bins", cmap)


def test_classify_with_ranges(sample_df):
result = apply_classification(sample_df, input_column_name="value", scheme="equal_interval", label_ranges=True, k=5)
assert result["value_classified"].values.tolist() == [
"1.0 - 1.8",
"1.8 - 2.6",
"2.6 - 3.4",
"3.4 - 4.2",
"4.2 - 5.0",
]
9 changes: 8 additions & 1 deletion tests/test_ecomap.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,13 +279,20 @@ def test_add_polyline_with_color(movebank_relocations):
trajectory = ecoscope.base.Trajectory.from_relocations(movebank_relocations)
# this is effectively a reimplementation of SpeedDataFrame
apply_classification(
trajectory, input_column_name="speed_kmhr", output_column_name="speed_bins", scheme="equal_interval", k=6
trajectory,
input_column_name="speed_kmhr",
output_column_name="speed_bins",
scheme="equal_interval",
label_suffix=" km/h",
label_ranges=True,
k=6,
)
cmap = ["#1a9850", "#91cf60", "#d9ef8b", "#fee08b", "#fc8d59", "#d73027"]
apply_color_map(trajectory, "speed_bins", cmap=cmap, output_column_name="speed_colors")

m = EcoMap()
m.add_layer(m.polyline_layer(trajectory, color_column="speed_colors", get_width=2000))
m.add_legend(labels=trajectory["speed_bins"], colors=trajectory["speed_colors"])

assert len(m.layers) == 2
assert isinstance(m.layers[1], PathLayer)
Expand Down
Loading