Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[utils] use force_align of torchaudio #2597

Merged
merged 3 commits into from
Aug 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions wenet/cli/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -128,9 +128,9 @@ def _decode(self,
for i, x in enumerate(res.tokens):
tokens_info.append({
'token': self.char_dict[x],
'start': times[i][0],
'end': times[i][1],
'confidence': res.tokens_confidence[i]
'start': round(times[i][0], 3),
'end': round(times[i][1], 3),
'confidence': round(res.tokens_confidence[i], 2)
})
result['tokens'] = tokens_info
return result
Expand Down
6 changes: 3 additions & 3 deletions wenet/cli/paraformer_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,9 +56,9 @@ def transcribe(self, audio_file: str, tokens_info: bool = False) -> dict:
for i, x in enumerate(res.tokens):
tokens_info.append({
'token': self.tokenizer.char_dict[x],
'start': times[i][0],
'end': times[i][1],
'confidence': res.tokens_confidence[i]
'start': round(times[i][0], 3),
'end': round(times[i][1], 3),
'confidence': round(res.tokens_confidence[i], 2)
})
result['tokens'] = tokens_info

Expand Down
52 changes: 5 additions & 47 deletions wenet/utils/ctc_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
import numpy as np

import torch
import torchaudio.functional as F


def remove_duplicates_and_blank(hyp: List[int],
Expand Down Expand Up @@ -112,53 +113,10 @@ def force_align(ctc_probs: torch.Tensor, y: torch.Tensor, blank_id=0) -> list:
Returns:
torch.Tensor: alignment result
"""
ctc_probs = ctc_probs.cpu()
y = y.cpu()
y_insert_blank = insert_blank(y, blank_id)

log_alpha = torch.zeros((ctc_probs.size(0), len(y_insert_blank)))
log_alpha = log_alpha - float('inf') # log of zero
state_path = torch.zeros((ctc_probs.size(0), len(y_insert_blank)),
dtype=torch.int16) - 1 # state path

# init start state
log_alpha[0, 0] = ctc_probs[0][y_insert_blank[0]]
log_alpha[0, 1] = ctc_probs[0][y_insert_blank[1]]

for t in range(1, ctc_probs.size(0)):
for s in range(len(y_insert_blank)):
if y_insert_blank[s] == blank_id or s < 2 or y_insert_blank[
s] == y_insert_blank[s - 2]:
candidates = torch.tensor(
[log_alpha[t - 1, s], log_alpha[t - 1, s - 1]])
prev_state = [s, s - 1]
else:
candidates = torch.tensor([
log_alpha[t - 1, s],
log_alpha[t - 1, s - 1],
log_alpha[t - 1, s - 2],
])
prev_state = [s, s - 1, s - 2]
log_alpha[
t, s] = torch.max(candidates) + ctc_probs[t][y_insert_blank[s]]
state_path[t, s] = prev_state[torch.argmax(candidates)]

state_seq = -1 * torch.ones((ctc_probs.size(0), 1), dtype=torch.int16)

candidates = torch.tensor([
log_alpha[-1, len(y_insert_blank) - 1],
log_alpha[-1, len(y_insert_blank) - 2]
])
final_state = [len(y_insert_blank) - 1, len(y_insert_blank) - 2]
state_seq[-1] = final_state[torch.argmax(candidates)]
for t in range(ctc_probs.size(0) - 2, -1, -1):
state_seq[t] = state_path[t + 1, state_seq[t + 1, 0]]

output_alignment = []
for t in range(0, ctc_probs.size(0)):
output_alignment.append(y_insert_blank[state_seq[t, 0]])

return output_alignment
ctc_probs = ctc_probs[None].cpu()
y = y[None].cpu()
alignments, _ = F.forced_align(ctc_probs, y, blank=blank_id)
return alignments[0]


def get_blank_id(configs, symbol_table):
Expand Down
Loading