-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8ec415c
commit ed41701
Showing
4 changed files
with
243 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,211 @@ | ||
#!/bin/bash | ||
|
||
# Copyright 2019 Mobvoi Inc. All Rights Reserved. | ||
. ./path.sh || exit 1; | ||
|
||
# Automatically detect number of npus | ||
if command -v npu-smi info &> /dev/null; then | ||
num_npus=$(npu-smi info -l | grep "Total Count" | awk '{print $4}') | ||
npu_list=$(seq -s, 0 $((num_npus-1))) | ||
else | ||
num_npus=-1 | ||
npu_list="-1" | ||
fi | ||
|
||
# You can also manually specify ASCEND_RT_VISIBLE_DEVICES | ||
# if you don't want to utilize all available NPU resources. | ||
export ASCEND_RT_VISIBLE_DEVICES="${npu_list}" | ||
echo "ASCEND_RT_VISIBLE_DEVICES is ${ASCEND_RT_VISIBLE_DEVICES}" | ||
|
||
stage=4 | ||
stop_stage=4 | ||
|
||
# You should change the following two parameters for multiple machine training, | ||
# see https://pytorch.org/docs/stable/elastic/run.html | ||
HOST_NODE_ADDR="localhost:0" | ||
num_nodes=1 | ||
job_id=2024 | ||
num_workers=8 | ||
prefetch=10 | ||
|
||
# The aishell dataset location, please change this to your own path | ||
# make sure of using absolute path. DO-NOT-USE relatvie path! | ||
data=/export/data/asr-data/OpenSLR/33/ | ||
data_url=www.openslr.org/resources/33 | ||
|
||
nj=16 | ||
dict=data/dict/lang_char.txt | ||
|
||
|
||
# data_type can be `raw` or `shard`. Typically, raw is used for small dataset, | ||
# `shard` is used for large dataset which is over 1k hours, and `shard` is | ||
# faster on reading data and training. | ||
data_type=raw | ||
num_utts_per_shard=1000 | ||
|
||
train_set=train | ||
train_config=conf/conformer_u2pp_rnnt.yaml | ||
dir=exp/conformer_rnnt | ||
checkpoint= | ||
|
||
# use average_checkpoint will get better result | ||
average_checkpoint=true | ||
decode_checkpoint=$dir/final.pt | ||
average_num=5 | ||
decode_modes="rnnt_beam_search" | ||
|
||
train_engine=deepspeed | ||
|
||
# model+optimizer or model_only, model+optimizer is more time-efficient but | ||
# consumes more space, while model_only is the opposite | ||
deepspeed_config=../whisper/conf/ds_stage2.json | ||
deepspeed_save_states="model_only" | ||
|
||
. tools/parse_options.sh || exit 1; | ||
|
||
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then | ||
echo "stage -1: Data Download" | ||
local/download_and_untar.sh ${data} ${data_url} data_aishell | ||
local/download_and_untar.sh ${data} ${data_url} resource_aishell | ||
fi | ||
|
||
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then | ||
# Data preparation | ||
local/aishell_data_prep.sh ${data}/data_aishell/wav \ | ||
${data}/data_aishell/transcript | ||
fi | ||
|
||
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then | ||
# remove the space between the text labels for Mandarin dataset | ||
for x in train dev test; do | ||
cp data/${x}/text data/${x}/text.org | ||
paste -d " " <(cut -f 1 -d" " data/${x}/text.org) \ | ||
<(cut -f 2- -d" " data/${x}/text.org | tr -d " ") \ | ||
> data/${x}/text | ||
rm data/${x}/text.org | ||
done | ||
|
||
tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ | ||
--in_scp data/${train_set}/wav.scp \ | ||
--out_cmvn data/$train_set/global_cmvn | ||
fi | ||
|
||
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then | ||
echo "Make a dictionary" | ||
mkdir -p $(dirname $dict) | ||
echo "<blank> 0" > ${dict} # 0 is for "blank" in CTC | ||
echo "<unk> 1" >> ${dict} # <unk> must be 1 | ||
echo "<sos/eos> 2" >> $dict | ||
tools/text2token.py -s 1 -n 1 data/train/text | cut -f 2- -d" " \ | ||
| tr " " "\n" | sort | uniq | grep -a -v -e '^\s*$' | \ | ||
awk '{print $0 " " NR+2}' >> ${dict} | ||
fi | ||
|
||
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then | ||
echo "Prepare data, prepare required format" | ||
for x in dev test ${train_set}; do | ||
if [ $data_type == "shard" ]; then | ||
tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \ | ||
--num_threads 16 data/$x/wav.scp data/$x/text \ | ||
$(realpath data/$x/shards) data/$x/data.list | ||
else | ||
tools/make_raw_list.py data/$x/wav.scp data/$x/text \ | ||
data/$x/data.list | ||
fi | ||
done | ||
fi | ||
|
||
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then | ||
mkdir -p $dir | ||
num_npus=$(echo $ASCEND_RT_VISIBLE_DEVICES | awk -F "," '{print NF}') | ||
# Use "hccl" for npu if it works, otherwise use "gloo" | ||
# NOTE(xcsong): deepspeed fails with gloo, see | ||
# https://github.com/microsoft/DeepSpeed/issues/2818 | ||
dist_backend="hccl" | ||
|
||
# train.py rewrite $train_config to $dir/train.yaml with model input | ||
# and output dimension, and $dir/train.yaml will be used for inference | ||
# and export. | ||
echo "$0: using ${train_engine}" | ||
|
||
# NOTE(xcsong): Both ddp & deepspeed can be launched by torchrun | ||
# NOTE(xcsong): To unify single-node & multi-node training, we add | ||
# all related args. You should change `nnodes` & | ||
# `rdzv_endpoint` for multi-node, see | ||
# https://pytorch.org/docs/stable/elastic/run.html#usage | ||
# https://github.com/wenet-e2e/wenet/pull/2055#issuecomment-1766055406 | ||
# `rdzv_id` - A user-defined id that uniquely identifies the worker group for a job. | ||
# This id is used by each node to join as a member of a particular worker group. | ||
# `rdzv_endpoint` - The rendezvous backend endpoint; usually in form <host>:<port>. | ||
# NOTE(xcsong): In multi-node training, some clusters require special NCCL variables to set prior to training. | ||
# For example: `NCCL_IB_DISABLE=1` + `NCCL_SOCKET_IFNAME=enp` + `NCCL_DEBUG=INFO` | ||
# without NCCL_IB_DISABLE=1 | ||
# RuntimeError: NCCL error in: ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1269, internal error, NCCL Version xxx | ||
# without NCCL_SOCKET_IFNAME=enp (IFNAME could be get by `ifconfig`) | ||
# RuntimeError: The server socket has failed to listen on any local network address. The server socket has failed to bind to [::]:xxx | ||
# ref: https://github.com/google/jax/issues/13559#issuecomment-1343573764 | ||
echo "$0: num_nodes is $num_nodes, proc_per_node is $num_npus" | ||
torchrun --nnodes=$num_nodes --nproc_per_node=$num_npus \ | ||
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint=$HOST_NODE_ADDR \ | ||
wenet/bin/train.py \ | ||
--device "npu" \ | ||
--train_engine ${train_engine} \ | ||
--config $train_config \ | ||
--data_type $data_type \ | ||
--train_data data/$train_set/data.list \ | ||
--cv_data data/dev/data.list \ | ||
${checkpoint:+--checkpoint $checkpoint} \ | ||
--model_dir $dir \ | ||
--ddp.dist_backend $dist_backend \ | ||
--num_workers ${num_workers} \ | ||
--pin_memory \ | ||
--deepspeed_config ${deepspeed_config} \ | ||
--deepspeed.save_states ${deepspeed_save_states} | ||
fi | ||
|
||
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then | ||
# Test model, please specify the model you want to test by --checkpoint | ||
if [ ${average_checkpoint} == true ]; then | ||
decode_checkpoint=$dir/avg_${average_num}.pt | ||
echo "do model average and final checkpoint is $decode_checkpoint" | ||
python wenet/bin/average_model.py \ | ||
--dst_model $decode_checkpoint \ | ||
--src_path $dir \ | ||
--num ${average_num} \ | ||
--val_best | ||
fi | ||
# Please specify decoding_chunk_size for unified streaming and | ||
# non-streaming model. The default value is -1, which is full chunk | ||
# for non-streaming inference. | ||
decoding_chunk_size= | ||
# only used in rescore mode for weighting different scores | ||
rescore_ctc_weight=0.5 | ||
rescore_transducer_weight=0.5 | ||
rescore_attn_weight=0.5 | ||
# only used in beam search, either pure beam search mode OR beam search inside rescoring | ||
search_ctc_weight=0.3 | ||
search_transducer_weight=0.7 | ||
|
||
reverse_weight=0.0 | ||
python wenet/bin/recognize.py --device "npu" \ | ||
--modes $decode_modes \ | ||
--config $dir/train.yaml \ | ||
--data_type $data_type \ | ||
--test_data data/test/data.list \ | ||
--checkpoint $decode_checkpoint \ | ||
--beam_size 10 \ | ||
--batch_size 32 \ | ||
--blank_penalty 0.0 \ | ||
--ctc_weight $rescore_ctc_weight \ | ||
--transducer_weight $rescore_transducer_weight \ | ||
--attn_weight $rescore_attn_weight \ | ||
--search_ctc_weight $search_ctc_weight \ | ||
--search_transducer_weight $search_transducer_weight \ | ||
--reverse_weight $reverse_weight \ | ||
--result_dir $dir \ | ||
${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} | ||
for mode in ${decode_modes}; do | ||
python tools/compute-wer.py --char=1 --v=1 \ | ||
data/test/text $dir/$mode/text > $dir/$mode/wer | ||
done | ||
fi |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters