Skip to content

Commit

Permalink
add npu setup and rnnt scripts
Browse files Browse the repository at this point in the history
  • Loading branch information
MengqingCao committed Jul 9, 2024
1 parent 8ec415c commit ed41701
Show file tree
Hide file tree
Showing 4 changed files with 243 additions and 0 deletions.
22 changes: 22 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,28 @@ conda install conda-forge::sox
pip install torch==2.2.2+cu121 torchaudio==2.2.2+cu121 -f https://download.pytorch.org/whl/torch_stable.html
```

<details><summary><b>For Ascend NPU users:</b></summary>

- Install CANN: please follow this [link](https://ascend.github.io/docs/sources/ascend/quick_install.html) to install CANN toolkit and kernels.

- Install WeNet with torch-npu dependencies:

``` sh
pip install -e .[torch-npu]
```

- Related version control table:

| Requirement | Minimum | Recommend |
| ------------ | ---------------- | ----------- |
| CANN | 8.0.RC2.alpha003 | latest |
| torch | 2.1.0 | 2.2.0 |
| torch-npu | 2.1.0 | 2.2.0 |
| torchaudio | 2.1.0 | 2.2.0 |
| deepspeed | 0.13.2 | latest |

</details>

- Install other python packages

``` sh
Expand Down
1 change: 1 addition & 0 deletions docs/python_package.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ You can specify the following parameters.
* `--align`: force align the input audio and transcript
* `--label`: the input label to align
* `--paraformer`: use the best Chinese model
* `--device`: specify the backend accelerator (cuda/npu/cpu)

## Python Programming Usage

Expand Down
211 changes: 211 additions & 0 deletions examples/aishell/rnnt/run_npu.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
. ./path.sh || exit 1;

# Automatically detect number of npus
if command -v npu-smi info &> /dev/null; then
num_npus=$(npu-smi info -l | grep "Total Count" | awk '{print $4}')
npu_list=$(seq -s, 0 $((num_npus-1)))
else
num_npus=-1
npu_list="-1"
fi

# You can also manually specify ASCEND_RT_VISIBLE_DEVICES
# if you don't want to utilize all available NPU resources.
export ASCEND_RT_VISIBLE_DEVICES="${npu_list}"
echo "ASCEND_RT_VISIBLE_DEVICES is ${ASCEND_RT_VISIBLE_DEVICES}"

stage=4
stop_stage=4

# You should change the following two parameters for multiple machine training,
# see https://pytorch.org/docs/stable/elastic/run.html
HOST_NODE_ADDR="localhost:0"
num_nodes=1
job_id=2024
num_workers=8
prefetch=10

# The aishell dataset location, please change this to your own path
# make sure of using absolute path. DO-NOT-USE relatvie path!
data=/export/data/asr-data/OpenSLR/33/
data_url=www.openslr.org/resources/33

nj=16
dict=data/dict/lang_char.txt


# data_type can be `raw` or `shard`. Typically, raw is used for small dataset,
# `shard` is used for large dataset which is over 1k hours, and `shard` is
# faster on reading data and training.
data_type=raw
num_utts_per_shard=1000

train_set=train
train_config=conf/conformer_u2pp_rnnt.yaml
dir=exp/conformer_rnnt
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=5
decode_modes="rnnt_beam_search"

train_engine=deepspeed

# model+optimizer or model_only, model+optimizer is more time-efficient but
# consumes more space, while model_only is the opposite
deepspeed_config=../whisper/conf/ds_stage2.json
deepspeed_save_states="model_only"

. tools/parse_options.sh || exit 1;

if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
echo "stage -1: Data Download"
local/download_and_untar.sh ${data} ${data_url} data_aishell
local/download_and_untar.sh ${data} ${data_url} resource_aishell
fi

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# Data preparation
local/aishell_data_prep.sh ${data}/data_aishell/wav \
${data}/data_aishell/transcript
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# remove the space between the text labels for Mandarin dataset
for x in train dev test; do
cp data/${x}/text data/${x}/text.org
paste -d " " <(cut -f 1 -d" " data/${x}/text.org) \
<(cut -f 2- -d" " data/${x}/text.org | tr -d " ") \
> data/${x}/text
rm data/${x}/text.org
done

tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
--in_scp data/${train_set}/wav.scp \
--out_cmvn data/$train_set/global_cmvn
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
echo "Make a dictionary"
mkdir -p $(dirname $dict)
echo "<blank> 0" > ${dict} # 0 is for "blank" in CTC
echo "<unk> 1" >> ${dict} # <unk> must be 1
echo "<sos/eos> 2" >> $dict
tools/text2token.py -s 1 -n 1 data/train/text | cut -f 2- -d" " \
| tr " " "\n" | sort | uniq | grep -a -v -e '^\s*$' | \
awk '{print $0 " " NR+2}' >> ${dict}
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "Prepare data, prepare required format"
for x in dev test ${train_set}; do
if [ $data_type == "shard" ]; then
tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
--num_threads 16 data/$x/wav.scp data/$x/text \
$(realpath data/$x/shards) data/$x/data.list
else
tools/make_raw_list.py data/$x/wav.scp data/$x/text \
data/$x/data.list
fi
done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
mkdir -p $dir
num_npus=$(echo $ASCEND_RT_VISIBLE_DEVICES | awk -F "," '{print NF}')
# Use "hccl" for npu if it works, otherwise use "gloo"
# NOTE(xcsong): deepspeed fails with gloo, see
# https://github.com/microsoft/DeepSpeed/issues/2818
dist_backend="hccl"

# train.py rewrite $train_config to $dir/train.yaml with model input
# and output dimension, and $dir/train.yaml will be used for inference
# and export.
echo "$0: using ${train_engine}"

# NOTE(xcsong): Both ddp & deepspeed can be launched by torchrun
# NOTE(xcsong): To unify single-node & multi-node training, we add
# all related args. You should change `nnodes` &
# `rdzv_endpoint` for multi-node, see
# https://pytorch.org/docs/stable/elastic/run.html#usage
# https://github.com/wenet-e2e/wenet/pull/2055#issuecomment-1766055406
# `rdzv_id` - A user-defined id that uniquely identifies the worker group for a job.
# This id is used by each node to join as a member of a particular worker group.
# `rdzv_endpoint` - The rendezvous backend endpoint; usually in form <host>:<port>.
# NOTE(xcsong): In multi-node training, some clusters require special NCCL variables to set prior to training.
# For example: `NCCL_IB_DISABLE=1` + `NCCL_SOCKET_IFNAME=enp` + `NCCL_DEBUG=INFO`
# without NCCL_IB_DISABLE=1
# RuntimeError: NCCL error in: ../torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1269, internal error, NCCL Version xxx
# without NCCL_SOCKET_IFNAME=enp (IFNAME could be get by `ifconfig`)
# RuntimeError: The server socket has failed to listen on any local network address. The server socket has failed to bind to [::]:xxx
# ref: https://github.com/google/jax/issues/13559#issuecomment-1343573764
echo "$0: num_nodes is $num_nodes, proc_per_node is $num_npus"
torchrun --nnodes=$num_nodes --nproc_per_node=$num_npus \
--rdzv_id=$job_id --rdzv_backend="c10d" --rdzv_endpoint=$HOST_NODE_ADDR \
wenet/bin/train.py \
--device "npu" \
--train_engine ${train_engine} \
--config $train_config \
--data_type $data_type \
--train_data data/$train_set/data.list \
--cv_data data/dev/data.list \
${checkpoint:+--checkpoint $checkpoint} \
--model_dir $dir \
--ddp.dist_backend $dist_backend \
--num_workers ${num_workers} \
--pin_memory \
--deepspeed_config ${deepspeed_config} \
--deepspeed.save_states ${deepspeed_save_states}
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# Test model, please specify the model you want to test by --checkpoint
if [ ${average_checkpoint} == true ]; then
decode_checkpoint=$dir/avg_${average_num}.pt
echo "do model average and final checkpoint is $decode_checkpoint"
python wenet/bin/average_model.py \
--dst_model $decode_checkpoint \
--src_path $dir \
--num ${average_num} \
--val_best
fi
# Please specify decoding_chunk_size for unified streaming and
# non-streaming model. The default value is -1, which is full chunk
# for non-streaming inference.
decoding_chunk_size=
# only used in rescore mode for weighting different scores
rescore_ctc_weight=0.5
rescore_transducer_weight=0.5
rescore_attn_weight=0.5
# only used in beam search, either pure beam search mode OR beam search inside rescoring
search_ctc_weight=0.3
search_transducer_weight=0.7

reverse_weight=0.0
python wenet/bin/recognize.py --device "npu" \
--modes $decode_modes \
--config $dir/train.yaml \
--data_type $data_type \
--test_data data/test/data.list \
--checkpoint $decode_checkpoint \
--beam_size 10 \
--batch_size 32 \
--blank_penalty 0.0 \
--ctc_weight $rescore_ctc_weight \
--transducer_weight $rescore_transducer_weight \
--attn_weight $rescore_attn_weight \
--search_ctc_weight $search_ctc_weight \
--search_transducer_weight $search_transducer_weight \
--reverse_weight $reverse_weight \
--result_dir $dir \
${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
for mode in ${decode_modes}; do
python tools/compute-wer.py --char=1 --v=1 \
data/test/text $dir/$mode/text > $dir/$mode/wer
done
fi
9 changes: 9 additions & 0 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,14 @@
"openai-whisper",
"librosa",
]

extra_require = {
"torch-npu": [
"torch==2.2.0", "torch-npu==2.2.0", "torchaudio==2.2.0", "decorator",
"numpy<2.0.0", "attrs", "psutil"
],
}

if platform.system() == 'Windows':
requirements += ['PySoundFile']

Expand All @@ -20,4 +28,5 @@
entry_points={"console_scripts": [
"wenet = wenet.cli.transcribe:main",
]},
extras_require=extra_require,
)

0 comments on commit ed41701

Please sign in to comment.