Skip to content

Commit

Permalink
support rope
Browse files Browse the repository at this point in the history
  • Loading branch information
Mddct committed Feb 28, 2024
1 parent 412e51b commit 558fd14
Show file tree
Hide file tree
Showing 3 changed files with 165 additions and 2 deletions.
99 changes: 99 additions & 0 deletions wenet/transformer/attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

import torch
from torch import nn
from wenet.transformer.embedding import apply_rotary_emb

from wenet.utils.common import get_dtype_min

Expand Down Expand Up @@ -424,3 +425,101 @@ def forward(
query.size(0), -1,
self.h * self.d_k)) # (batch, time1, d_model)
return self.linear_out(output), new_cache


class RopeMultiHeadedAttention(MultiHeadedAttention):

def __init__(self,
n_head: int,
n_feat: int,
dropout_rate: float,
key_bias: bool = True,
use_sdpa: bool = False,
bias: bool = True,
n_kv_head: Optional[int] = None,
head_dim: Optional[int] = None):
super().__init__(n_head, n_feat, dropout_rate, key_bias, use_sdpa,
bias, n_kv_head, head_dim)

def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
pos_emb: torch.Tensor = torch.empty(0),
cache: torch.Tensor = torch.zeros((0, 0, 0, 0))
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Compute scaled dot product attention.
Args:
query (torch.Tensor): Query tensor (#batch, time1, size).
key (torch.Tensor): Key tensor (#batch, time2, size).
value (torch.Tensor): Value tensor (#batch, time2, size).
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
1.When applying cross attention between decoder and encoder,
the batch padding mask for input is in (#batch, 1, T) shape.
2.When applying self attention of encoder,
the mask is in (#batch, T, T) shape.
3.When applying self attention of decoder,
the mask is in (#batch, L, L) shape.
4.If the different position in decoder see different block
of the encoder, such as Mocha, the passed in mask could be
in (#batch, L, T) shape. But there is no such case in current
Wenet.
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
Returns:
torch.Tensor: Output tensor (#batch, time1, d_model).
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2)
where `cache_t == chunk_size * num_decoding_left_chunks`
and `head * d_k == size`
"""
q, k, v = self.forward_qkv(query, key, value)
# see above
if cache.size(0) > 0:
key_cache, value_cache = torch.split(cache,
cache.size(-1) // 2,
dim=-1)
k = torch.cat([key_cache, k], dim=2)
v = torch.cat([value_cache, v], dim=2)

# NOTE(Mddct): In order to make the code easier to read,
# these two lines are not placed in MultiHeadedAttention.
q = apply_rotary_emb(q, freqs_cis=pos_emb)
k = apply_rotary_emb(k, freqs_cis=pos_emb)

new_cache = torch.cat((k, v), dim=-1)
if self.h_kv != self.h:
k = torch.repeat_interleave(
k,
self.h // self.h_kv,
dim=1,
)
v = torch.repeat_interleave(
v,
self.h // self.h_kv,
dim=1,
)

if not self.use_sdpa:
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask), new_cache
else:
output = torch.nn.functional.scaled_dot_product_attention(
q,
k,
v,
attn_mask=mask.unsqueeze(1),
dropout_p=self.dropout_rate,
scale=1 / math.sqrt(self.d_k),
)
output = (output.transpose(1, 2).contiguous().view(
query.size(0), -1,
self.h * self.d_k)) # (batch, time1, d_model)
return self.linear_out(output), new_cache
62 changes: 61 additions & 1 deletion wenet/transformer/embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -178,7 +178,7 @@ class NoPositionalEncoding(torch.nn.Module):
""" No position encoding
"""

def __init__(self, d_model: int, dropout_rate: float):
def __init__(self, d_model: int, dropout_rate: float, *args):
super().__init__()
self.d_model = d_model
self.dropout = torch.nn.Dropout(p=dropout_rate)
Expand All @@ -195,3 +195,63 @@ def forward(self,
def position_encoding(self, offset: Union[int, torch.Tensor],
size: int) -> torch.Tensor:
return torch.zeros(1, size, self.d_model)


# copy from:https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L84
def precompute_freqs_cis(dim: int,
end: int,
theta: float = 10000.0) -> torch.Tensor:
"""Precomputes the frequency cis."""
freqs = 1.0 / (theta**(torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return freqs_cis


# copy from:https://github.com/google/gemma_pytorch/blob/main/gemma/model.py#L95
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""Applies the rotary embedding to the query and key tensors."""
x_ = torch.view_as_complex(
torch.stack(torch.chunk(x.transpose(1, 2).float(), 2, dim=-1), dim=-1))
x_out = torch.view_as_real(x_ * freqs_cis).type_as(x)
x_out = torch.cat(torch.chunk(x_out, 2, dim=-1), dim=-2)
x_out = x_out.reshape(x_out.shape[0], x_out.shape[1], x_out.shape[2],
-1).transpose(1, 2)
return x_out


class RopePositionalEncoding(PositionalEncoding):

def __init__(self,
d_model: int,
dropout_rate: float,
max_len: int = 1500,
rope_theta=10000.0):
super().__init__(d_model, dropout_rate=dropout_rate, max_len=max_len)
delattr(self, 'pe')
self.pe = precompute_freqs_cis(d_model, max_len * 2, rope_theta)
del self.dropout
self.dropout_rate = dropout_rate

def forward(
self,
x: torch.Tensor,
offset: Union[int,
torch.Tensor] = 0) -> Tuple[torch.Tensor, torch.Tensor]:

self.pe = self.pe.to(x.device)
pos_emb = self.position_encoding(offset, x.size(1), False)
# NOTE(Mddct): some model don't scale
# TODO(Mddct): fix
x = x * self.xscale
# NOTE(Mddct) dropout don't suuport complex float for pos_emb
return self.dropout(x), self.dropout_complex(pos_emb)

def dropout_complex(self, x):
mask = torch.nn.functional.dropout(
torch.ones_like(x.real),
self.training,
p=self.dropout_rate,
)
return x * mask
6 changes: 5 additions & 1 deletion wenet/utils/class_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,11 +21,13 @@
from wenet.squeezeformer.subsampling import DepthwiseConv2dSubsampling4
from wenet.transformer.embedding import (PositionalEncoding,
RelPositionalEncoding,
RopePositionalEncoding,
WhisperPositionalEncoding,
LearnablePositionalEncoding,
NoPositionalEncoding)
from wenet.transformer.attention import (MultiHeadedAttention,
RelPositionMultiHeadedAttention)
RelPositionMultiHeadedAttention,
RopeMultiHeadedAttention)
from wenet.efficient_conformer.attention import GroupedRelPositionMultiHeadedAttention

WENET_ACTIVATION_CLASSES = {
Expand Down Expand Up @@ -63,12 +65,14 @@
"abs_pos_whisper": WhisperPositionalEncoding,
"embed_learnable_pe": LearnablePositionalEncoding,
"abs_pos_paraformer": ParaformerPositinoalEncoding,
"rope": RopePositionalEncoding,
}

WENET_ATTENTION_CLASSES = {
"selfattn": MultiHeadedAttention,
"rel_selfattn": RelPositionMultiHeadedAttention,
"grouped_rel_selfattn": GroupedRelPositionMultiHeadedAttention,
"rope_selfattn": RopeMultiHeadedAttention,
}

WENET_MLP_CLASSES = {
Expand Down

0 comments on commit 558fd14

Please sign in to comment.