Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Support model offloading SparseGPTQ #918

Open
wants to merge 7 commits into
base: main
Choose a base branch
from

Conversation

kylesayrs
Copy link
Collaborator

Purpose

  • Fix bug related to running calibration with offloaded models
  • Add offloading support to SparseGPTQ
  • Add additional logging to SparseGPTQ to validate sparsity

Changes

  • Update logic which determines which device to put calibration inputs on
    • New logic incorporates offloading assumptions. Previously, if the model was offloaded, the logic would attempt to put the inputs on the meta device
NotImplementedError: Cannot copy out of meta tensor; no data!
  • Add weight onloading and offloading to SparseGPTQ
if is_module_offloaded(self.layer):
    self.layer._hf_hook.pre_forward(self.layer)
  • Added sparsity logging to SparseGPTQ for algorithm validation
===== Compressing layer 110/113 to sparsity 0.5 =====                                                                  
2024-11-15T23:56:01.649029+0000 | compress_module | INFO - Compressing model.layers.15.mlp.gate_proj.model.layers.15.mlp.gate_proj...
2024-11-15T23:56:02.016416+0000 | compress | INFO - time 0.36
2024-11-15T23:56:02.016682+0000 | compress | INFO - error 39350.72
2024-11-15T23:56:02.072700+0000 | compress | INFO - sparsity 0.50
2024-11-15T23:56:02.094924+0000 | apply_compression | INFO -

Testing

llama_example.py
from accelerate import cpu_offload
from datasets import load_dataset
from transformers import AutoTokenizer

from llmcompressor.modifiers.obcq import SparseGPTModifier
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot

# Select model and load it.
MODEL_ID = "meta-llama/Llama-3.2-1B-Instruct"

model = SparseAutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    device_map="cuda:0",
    torch_dtype="auto",
)
cpu_offload(model)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

# Select calibration dataset.
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"

# Select number of samples. 512 samples is a good place to start.
# Increasing the number of samples can improve accuracy.
NUM_CALIBRATION_SAMPLES = 2  # 512
MAX_SEQUENCE_LENGTH = 2048

# Load dataset and preprocess.
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES))


def preprocess(example):
    return {
        "text": tokenizer.apply_chat_template(
            example["messages"],
            tokenize=False,
        )
    }


ds = ds.map(preprocess)


# Tokenize inputs.
def tokenize(sample):
    return tokenizer(
        sample["text"],
        padding=False,
        max_length=MAX_SEQUENCE_LENGTH,
        truncation=True,
        add_special_tokens=False,
    )


ds = ds.map(tokenize, remove_columns=ds.column_names)

# Configure the quantization algorithm to run.
#   * quantize the weights to 4 bit with GPTQ with a group size 128
recipe = SparseGPTModifier(targets="Linear", sparsity=0.5, ignore=["lm_head"])

# Apply algorithms.
oneshot(
    model=model,
    dataset=ds,
    recipe=recipe,
    max_seq_length=MAX_SEQUENCE_LENGTH,
    num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)

# Confirm generations of the quantized model look sane.
print("\n\n")
print("========== SAMPLE GENERATION ==============")
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
print("==========================================\n\n")

# Save to disk compressed.
SAVE_DIR = MODEL_ID.split("/")[1] + "-W4A16-G128"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)

Copy link

👋 Hi! Thank you for contributing to llm-compressor. Please add the ready label when the PR is ready for review.

@kylesayrs kylesayrs changed the title [Bugfix] Fix offload [Bugfix] Support model offloading Nov 16, 2024
@kylesayrs kylesayrs changed the title [Bugfix] Support model offloading [Bugfix] Support model offloading SparseGPTQ Nov 16, 2024
@kylesayrs kylesayrs self-assigned this Nov 18, 2024
@kylesayrs kylesayrs marked this pull request as draft November 18, 2024 20:45
Signed-off-by: Kyle Sayers <[email protected]>
@kylesayrs kylesayrs marked this pull request as ready for review November 18, 2024 21:08
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant