-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Victor Kaillo
committed
Feb 22, 2022
1 parent
0696fa6
commit 4777865
Showing
4 changed files
with
167 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
name: main_env | ||
conda_env: conda.yml | ||
|
||
entry_points: | ||
main: | ||
parameters: | ||
hydra_options: | ||
description: Hydra parameters to override | ||
type: str | ||
default: '' | ||
command: >- | ||
python main.py $(echo {hydra_options}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
name: main_env | ||
channels: | ||
- conda-forge | ||
- defaults | ||
dependencies: | ||
- requests=2.24.0 | ||
- pip=21.3.1 | ||
- hydra-core=1.1.1 | ||
- pip: | ||
- wandb==0.12.9 | ||
- mlflow==1.14.1 | ||
- hydra-joblib-launcher==1.1.5 | ||
- opendatasets==0.1.20 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
main: | ||
project_name: mlops-creditcard_fraud_predictive | ||
experiment_name: dev | ||
execute_steps: | ||
- download | ||
- preprocess | ||
- check_data | ||
- segregate | ||
- decision_tree | ||
- evaluate | ||
# This seed will be used to seed the random number generator | ||
# to ensure repeatibility of the data splits and other | ||
# pseudo-random operations | ||
random_seed: 42 | ||
data: | ||
train_data: "mlops-creditcard_fraud_predictive/train_data.csv:latest" | ||
file_url: "https://www.kaggle.com/mlg-ulb/creditcardfraud.csv" | ||
reference_dataset: "mlops-creditcard_fraud_predictive/ccfraud_preprocessed.csv:latest" | ||
# Threshold for Kolomorov-Smirnov test | ||
ks_alpha: 0.05 | ||
test_size: 0.3 | ||
val_size: 0.3 | ||
# Stratify according to the target when splitting the data | ||
# in train/test or in train/val | ||
stratify: Class | ||
decision_tree_pipeline: | ||
decision_tree: | ||
criterion: "entropy" | ||
splitter: "best" | ||
max_depth: 13 | ||
numerical_pipe: | ||
model: 0 | ||
export_artifact: "model_export" |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
import mlflow | ||
import os | ||
import hydra | ||
from omegaconf import DictConfig, OmegaConf | ||
|
||
# This automatically reads in the configuration | ||
@hydra.main(config_name='config') | ||
def process_args(config: DictConfig): | ||
|
||
# Setup the wandb experiment. All runs will be grouped under this name | ||
os.environ["WANDB_PROJECT"] = config["main"]["project_name"] | ||
os.environ["WANDB_RUN_GROUP"] = config["main"]["experiment_name"] | ||
|
||
# You can get the path at the root of the MLflow project with this: | ||
root_path = hydra.utils.get_original_cwd() | ||
|
||
# Check which steps we need to execute | ||
if isinstance(config["main"]["execute_steps"], str): | ||
# This was passed on the command line as a comma-separated list of steps | ||
steps_to_execute = config["main"]["execute_steps"].split(",") | ||
else: | ||
steps_to_execute = list(config["main"]["execute_steps"]) | ||
|
||
# Download step | ||
if "download" in steps_to_execute: | ||
|
||
_ = mlflow.run( | ||
os.path.join(root_path, "download"), | ||
"main", | ||
parameters={ | ||
"file_url": config["data"]["file_url"], | ||
"artifact_name": "raw_data.csv", | ||
"artifact_type": "raw_data", | ||
"artifact_description": "Data as downloaded" | ||
} | ||
) | ||
|
||
if "preprocess" in steps_to_execute: | ||
_ = mlflow.run( | ||
os.path.join(root_path, "preprocess"), | ||
"main", | ||
parameters={ | ||
"input_artifact": "raw_data.csv:latest", | ||
"artifact_name": "preprocessed_data.csv", | ||
"artifact_type": "preprocessed_data", | ||
"artifact_description": "Data with preprocessing applied" | ||
} | ||
) | ||
|
||
if "check_data" in steps_to_execute: | ||
_ = mlflow.run( | ||
os.path.join(root_path, "check_data"), | ||
"main", | ||
parameters={ | ||
"reference_artifact": config["data"]["reference_dataset"], | ||
"sample_artifact": "preprocessed_data.csv:latest", | ||
"ks_alpha": config["data"]["ks_alpha"] | ||
} | ||
) | ||
|
||
if "segregate" in steps_to_execute: | ||
|
||
_ = mlflow.run( | ||
os.path.join(root_path, "segregate"), | ||
"main", | ||
parameters={ | ||
"input_artifact": "preprocessed_data.csv:latest", | ||
"artifact_root": "data", | ||
"artifact_type": "segregated_data", | ||
"test_size": config["data"]["test_size"], | ||
"stratify": config["data"]["stratify"], | ||
"random_state": config["main"]["random_seed"] | ||
} | ||
) | ||
|
||
if "decision_tree" in steps_to_execute: | ||
# Serialize decision tree configuration | ||
model_config = os.path.abspath("decision_tree_config.yml") | ||
|
||
with open(model_config, "w+") as fp: | ||
fp.write(OmegaConf.to_yaml(config["decision_tree_pipeline"])) | ||
|
||
_ = mlflow.run( | ||
os.path.join(root_path, "decision_tree"), | ||
"main", | ||
parameters={ | ||
"train_data": config["data"]["train_data"], | ||
"model_config": model_config, | ||
"export_artifact": config["decision_tree_pipeline"]["export_artifact"], | ||
"random_seed": config["main"]["random_seed"], | ||
"val_size": config["data"]["val_size"], | ||
"stratify": config["data"]["stratify"] | ||
} | ||
) | ||
|
||
if "evaluate" in steps_to_execute: | ||
|
||
_ = mlflow.run( | ||
os.path.join(root_path, "evaluate"), | ||
"main", | ||
parameters={ | ||
"model_export": f"{config['decision_tree_pipeline']['export_artifact']}:latest", | ||
"test_data": "test_data.csv:latest" | ||
} | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
process_args() |