Skip to content

Commit

Permalink
Merge branch 'main' into feat/make-strageties-as-packages
Browse files Browse the repository at this point in the history
  • Loading branch information
0xArdi committed Dec 12, 2023
2 parents c6b16a2 + ee7d52e commit 54e4f96
Showing 1 changed file with 25 additions and 7 deletions.
32 changes: 25 additions & 7 deletions tools/optimization_by_prompting/optimization_by_prompting.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@
- "info_utility": Utility of the information provided in "ADDITIONAL_INFORMATION" to help you make the prediction.
0 indicates lowest utility; 1 maximum utility.
* The sum of "p_yes" and "p_no" must equal 1.
* Output only the JSON object. Do not include any other contents in your response."""
"""

URL_QUERY_PROMPT = """
You are an LLM inside a multi-agent system that takes in a prompt of a user requesting a probability estimation
Expand Down Expand Up @@ -150,14 +150,19 @@
PROMPT_INSTRUCTOR = PromptTemplate(
input_variables=["instructions", "score"], template=TEMPLATE_INSTRUCTOR
)

OUTPUT_FORMAT = """
Your output response must be only a single JSON object to be parsed by Python's "json.loads()".
The JSON must contain a field "p_yes" which marks the probability of the event happening.
A valid example is: {{"p_yes": 0.5}}
"""

def evaluate_prompt(prompt, df, llm):
prompt += OUTPUT_FORMAT
chain = LLMChain(llm=llm, prompt=prompt)
probas = []

for row in df.itertuples():
pred_chain = chain.run({"user_prompt": row.query, "additional_information": ""})
pred_chain = chain.run({"user_prompt": row.query, "additional_information": OUTPUT_FORMAT})
try:
dictionary_match = float(eval(pred_chain)["p_yes"])
except:
Expand Down Expand Up @@ -187,10 +192,23 @@ def prompt_engineer(openai_api_key, init_instructions, instructions_format, iter
template = init_instructions

for _ in range(iterations):
prompt = PromptTemplate(
input_variables=["user_prompt", "additional_information"],
template=template + instructions_format,
)
generated_template = template + instructions_format
try:
prompt = PromptTemplate(
input_variables=["user_prompt", "additional_information"],
template=generated_template,
)
except Exception as e:
# it may happen that the generated prompt is not valid
# in that case, we just skip it
print(f"Failed to parse template {generated_template}: {e}")
# regenerate the template
template = create_new_instructions(
llm=llm,
instructions=score_template["template"],
score=score_template["score"],
)
continue

df["probability"] = evaluate_prompt(prompt=prompt, llm=llm, df=df)

Expand Down

0 comments on commit 54e4f96

Please sign in to comment.