Skip to content

Commit

Permalink
Merge pull request #115 from psouranis/main
Browse files Browse the repository at this point in the history
Adding optimization by prompting
  • Loading branch information
0xArdi authored Oct 4, 2023
2 parents fdb487e + b9d570d commit 1c455c2
Showing 1 changed file with 384 additions and 0 deletions.
384 changes: 384 additions & 0 deletions tools/optimization_by_prompting.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,384 @@
"""A script that implements the optimization by prompting methodology."""

import os
from io import StringIO
from typing import Any, Dict, Optional, Tuple
import re
import json
from concurrent.futures import Future, ThreadPoolExecutor
from typing import Any, Dict, Generator, List, Optional, Tuple

import requests
from bs4 import BeautifulSoup
from googleapiclient.discovery import build

import openai
import pandas as pd
from langchain.chains import LLMChain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from sklearn.metrics import roc_auc_score

# Provide several examples in order to backtest the resulted prompt
EXAMPLES = """query;event
"Will Apple release iphone 15 by 1 October 2023?";1
"Will the newly elected ceremonial president of Singapore face any political scandals by 13 September 2023?";0
"Will Russia Invade Ukraine in 2022";1
"Will Finland and Sweden apply to join NATO in 2023?";1
"Will Charles become King in 2022?";1
"""

NUM_URLS_EXTRACT = 5
DEFAULT_OPENAI_SETTINGS = {
"max_tokens": 500,
"temperature": 0.8,
}
ALLOWED_TOOLS = [
"deepmind-optimization-strong",
"deepmind-optimization",
]
TOOL_TO_ENGINE = {
"deepmind-optimization-strong": "gpt-4",
"deepmind-optimization": "gpt-3.5-turbo",
}

PREDICTION_PROMPT_INSTRUCTIONS = """
You are an LLM inside a multi-agent system that takes in a prompt of a user requesting a probability estimation
for a given event. You are provided with an input under the label "USER_PROMPT". You must follow the instructions
under the label "INSTRUCTIONS". You must provide your response in the format specified under "OUTPUT_FORMAT".
INSTRUCTIONS
* Read the input under the label "USER_PROMPT" delimited by three backticks.
* The "USER_PROMPT" specifies an event.
* The event will only have two possible outcomes: either the event will happen or the event will not happen.
* If the event has more than two possible outcomes, you must ignore the rest of the instructions and output the response "Error".
* You must provide a probability estimation of the event happening, based on your training data.
* You are provided an itemized list of information under the label "ADDITIONAL_INFORMATION" delimited by three backticks.
* You can use any item in "ADDITIONAL_INFORMATION" in addition to your training data.
* If an item in "ADDITIONAL_INFORMATION" is not relevant, you must ignore that item for the estimation.
* You must provide your response in the format specified under "OUTPUT_FORMAT".
* Do not include any other contents in your response.
"""


PREDICTION_PROMPT_FORMAT = """
USER_PROMPT:
```
{user_prompt}
```
ADDITIONAL_INFORMATION:
```
{additional_information}
```
OUTPUT_FORMAT
* Your output response must be only a single JSON object to be parsed by Python's "json.loads()".
* The JSON must contain four fields: "p_yes", "p_no", "confidence", and "info_utility".
* Each item in the JSON must have a value between 0 and 1.
- "p_yes": Estimated probability that the event in the "USER_PROMPT" occurs.
- "p_no": Estimated probability that the event in the "USER_PROMPT" does not occur.
- "confidence": A value between 0 and 1 indicating the confidence in the prediction. 0 indicates lowest
confidence value; 1 maximum confidence value.
- "info_utility": Utility of the information provided in "ADDITIONAL_INFORMATION" to help you make the prediction.
0 indicates lowest utility; 1 maximum utility.
* The sum of "p_yes" and "p_no" must equal 1.
* Output only the JSON object. Do not include any other contents in your response."""

URL_QUERY_PROMPT = """
You are an LLM inside a multi-agent system that takes in a prompt of a user requesting a probability estimation
for a given event. You are provided with an input under the label "USER_PROMPT". You must follow the instructions
under the label "INSTRUCTIONS". You must provide your response in the format specified under "OUTPUT_FORMAT".
INSTRUCTIONS
* Read the input under the label "USER_PROMPT" delimited by three backticks.
* The "USER_PROMPT" specifies an event.
* The event will only have two possible outcomes: either the event will happen or the event will not happen.
* If the event has more than two possible outcomes, you must ignore the rest of the instructions and output the response "Error".
* You must provide your response in the format specified under "OUTPUT_FORMAT".
* Do not include any other contents in your response.
USER_PROMPT:
```
{user_prompt}
```
OUTPUT_FORMAT
* Your output response must be only a single JSON object to be parsed by Python's "json.loads()".
* The JSON must contain two fields: "queries", and "urls".
- "queries": An array of strings of size between 1 and 5. Each string must be a search engine query that can help obtain relevant information to estimate
the probability that the event in "USER_PROMPT" occurs. You must provide original information in each query, and they should not overlap
or lead to obtain the same set of results.
* Output only the JSON object. Do not include any other contents in your response.
"""

TEMPLATE_INSTRUCTOR = """You are an advanced reasoning agent that suggest to a bot ways to predict world events very accurately.
You are given the following:
(1) The previous instructions.
(2) A metric score that evaluates the previous instructions given to the bot. Best metric score is 1.
You are asked to refine the instructions in order to reach the best score.
Try to think the steps one by one.
Example format:
INSTRUCTIONS: previous instructions here
METRIC SCORE: score between 0 and 1 here
INSTRUCTIONS: {instructions}
METRIC SCORE: {score}
NEW INSTRUCTIONS:"""

PROMPT_INSTRUCTOR = PromptTemplate(
input_variables=["instructions", "score"], template=TEMPLATE_INSTRUCTOR
)


def evaluate_prompt(prompt, df, llm):
chain = LLMChain(llm=llm, prompt=prompt)
probas = []

for row in df.itertuples():
pred_chain = chain.run({"user_prompt": row.query, "additional_information": ""})
try:
dictionary_match = float(eval(pred_chain)["p_yes"])
except:
dictionary_match = float(eval(re.search(r'\{.*\}', pred_chain).group(0))["p_yes"])
probas.append(dictionary_match)

return probas


def calculate_score(df, answer_key="event", prob_key="probability"):
return roc_auc_score(df[answer_key], df[prob_key])


def create_new_instructions(llm, instructions, score):

chain = LLMChain(llm=llm, prompt=PROMPT_INSTRUCTOR)
evaluations = chain.run({"instructions": instructions, "score": score})
return evaluations


def prompt_engineer(init_instructions, instructions_format, iterations=3, model_name="gpt-3.5-turbo"):

llm = OpenAI(model_name=model_name)
score_template = {"template": init_instructions, "score": 0.0}

df = pd.read_csv(StringIO(EXAMPLES), sep=";")
template = init_instructions

for _ in range(iterations):
prompt = PromptTemplate(
input_variables=["user_prompt", "additional_information"],
template=template + instructions_format,
)

df["probability"] = evaluate_prompt(prompt=prompt, llm=llm, df=df)

score = calculate_score(df)
print(f"Score: {score}\n")
if score > score_template["score"]:
print(
f"Best template score: {score} \nTemplate: {template}\n"
)
score_template["template"] = template
score_template["score"] = score
template = create_new_instructions(
llm=llm,
instructions=score_template["template"],
score=score_template["score"],
)

return score_template["template"]


def search_google(query: str, api_key: str, engine: str, num: int = 3) -> List[str]:
service = build("customsearch", "v1", developerKey=api_key)
search = (
service.cse()
.list(
q=query,
cx=engine,
num=num,
)
.execute()
)
return [result["link"] for result in search["items"]]


def get_urls_from_queries(queries: List[str], api_key: str, engine: str) -> List[str]:
"""Get URLs from search engine queries"""
results = []
for query in queries:
for url in search_google(
query=query,
api_key=api_key,
engine=engine,
num=3, # Number of returned results
):
results.append(url)
unique_results = list(set(results))
return unique_results


def extract_text(
html: str,
num_words: int = 300, # TODO: summerise using GPT instead of limit
) -> str:
"""Extract text from a single HTML document"""
soup = BeautifulSoup(html, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = "\n".join(chunk for chunk in chunks if chunk)
return text[:num_words]


def process_in_batches(
urls: List[str], window: int = 5, timeout: int = 10
) -> Generator[None, None, List[Tuple[Future, str]]]:
"""Iter URLs in batches."""
with ThreadPoolExecutor() as executor:
for i in range(0, len(urls), window):
batch = urls[i : i + window]
futures = [(executor.submit(requests.get, url, timeout=timeout), url) for url in batch]
yield futures


def extract_texts(urls: List[str], num_words: int = 300) -> List[str]:
"""Extract texts from URLs"""
max_allowed = 5
extracted_texts = []
count = 0
stop = False
for batch in process_in_batches(urls=urls):
for future, url in batch:
try:
result = future.result()
if result.status_code != 200:
continue
extracted_texts.append(extract_text(html=result.text, num_words=num_words))
count += 1
if count >= max_allowed:
stop = True
break
except requests.exceptions.ReadTimeout:
print(f"Request timed out: {url}.")
except Exception as e:
print(f"An error occurred: {e}")
if stop:
break
return extracted_texts


def fetch_additional_information(
prompt: str,
engine: str,
temperature: float,
max_tokens: int,
google_api_key: str,
google_engine: str,
) -> str:
"""Fetch additional information."""
url_query_prompt = URL_QUERY_PROMPT.format(user_prompt=prompt)
moderation_result = openai.Moderation.create(url_query_prompt)
if moderation_result["results"][0]["flagged"]:
return ""
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": url_query_prompt},
]

response = openai.ChatCompletion.create(
model=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=90,
request_timeout=90,
stop=None,
)
json_data = json.loads(response.choices[0].message.content)
urls = get_urls_from_queries(
json_data["queries"],
api_key=google_api_key,
engine=google_engine,
)
texts = extract_texts(urls)
return "\n".join(["- " + text for text in texts])


def run(**kwargs) -> Tuple[str, Optional[Dict[str, Any]]]:
"""Run the task"""
tool = kwargs["tool"]
prompt = kwargs["prompt"]
improve_instructions = kwargs["improve_instructions"]
max_tokens = kwargs.get("max_tokens", DEFAULT_OPENAI_SETTINGS["max_tokens"])
temperature = kwargs.get("temperature", DEFAULT_OPENAI_SETTINGS["temperature"])

openai.api_key = kwargs["api_keys"]["openai"]
if tool not in ALLOWED_TOOLS:
raise ValueError(f"Tool {tool} is not supported.")

engine = TOOL_TO_ENGINE[tool]
additional_information = (
fetch_additional_information(
prompt=prompt,
engine=engine,
temperature=temperature,
max_tokens=max_tokens,
google_api_key=kwargs["api_keys"]["google_api_key"],
google_engine=kwargs["api_keys"]["google_engine_id"],
)
if tool == "prediction-online-sme"
else ""
)

instructions = (
prompt_engineer(PREDICTION_PROMPT_INSTRUCTIONS, PREDICTION_PROMPT_FORMAT)
if improve_instructions
else PREDICTION_PROMPT_INSTRUCTIONS
)
instructions += PREDICTION_PROMPT_FORMAT

prediction_prompt = instructions.format(
user_prompt=prompt, additional_information=additional_information
)

moderation_result = openai.Moderation.create(prediction_prompt)
if moderation_result["results"][0]["flagged"]:
return "Moderation flagged the prompt as in violation of terms.", None
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prediction_prompt},
]

response = openai.ChatCompletion.create(
model=engine,
messages=messages,
temperature=temperature,
max_tokens=max_tokens,
n=1,
timeout=150,
request_timeout=150,
stop=None,
)
return response.choices[0].message.content, None


if __name__ == "__main__":
os.environ['OPENAI_API_KEY'] = "your_openai_api_key"
api_keys = {"openai": "your_openai_api_key"}

func_args = {
"api_keys": api_keys,
"tool": "deepmind-optimization",
"prompt": "Will AI take over the world in the next year?",
"improve_instructions": True,
}

response = run(**func_args)
print(response)

0 comments on commit 1c455c2

Please sign in to comment.