Skip to content

Commit

Permalink
Add a standalone onnx demo
Browse files Browse the repository at this point in the history
  • Loading branch information
keveman committed Oct 25, 2024
1 parent 76de868 commit c9e767d
Show file tree
Hide file tree
Showing 2 changed files with 72 additions and 0 deletions.
28 changes: 28 additions & 0 deletions moonshine/demo/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Moonshine Demos

This directory contains various scripts the demonstrate the capabilities of the Moonshine ASR models.

## onnx_standalone.py

This script demonstrates how to run a Moonshine model with the `onnxruntime` package alone, without depending on `torch` or `tensorflow`. This enables running on SBCs such as Raspberry Pi. Follow the instructions below to setup and run.

* Install `onnxruntime` (or `onnxruntime-gpu` if you want to run on GPUs) and `tokenizers` packages using your Python package manager of choice, such as `pip`.

* Download the `onnx` files from huggingface hub to a directory.

```shell
mkdir moonshine_tiny_onnx
cd moonshine_tiny_onnx
wget https://huggingface.co/UsefulSensors/moonshine/resolve/main/onnx/base/preprocess.onnx
wget https://huggingface.co/UsefulSensors/moonshine/resolve/main/onnx/base/encode.onnx
wget https://huggingface.co/UsefulSensors/moonshine/resolve/main/onnx/base/uncached_decode.onnx
wget https://huggingface.co/UsefulSensors/moonshine/resolve/main/onnx/base/cached_decode.onnx
cd ..
```

* Run `onnx_standalone.py` to transcribe a wav file

```shell
moonshine/moonshine/demo/onnx_standalone.py --models_dir moonshine_tiny_onnx --wav_file moonshine/moonshine/assets/beckett.wav
['Ever tried ever failed, no matter try again fail again fail better.']
```
44 changes: 44 additions & 0 deletions moonshine/demo/onnx_standalone.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import os
import sys
import argparse
import wave
import numpy as np
import tokenizers

MOONSHINE_DEMO_DIR = os.path.dirname(__file__)
sys.path.append(os.path.join(MOONSHINE_DEMO_DIR, ".."))

from onnx_model import MoonshineOnnxModel


def main(models_dir, wav_file):
m = MoonshineOnnxModel(models_dir=models_dir)
with wave.open(wav_file) as f:
params = f.getparams()
assert (
params.nchannels == 1
and params.framerate == 16_000
and params.sampwidth == 2
), f"wave file should have 1 channel, 16KHz, and int16"
audio = f.readframes(params.nframes)
audio = np.frombuffer(audio, np.int16) / 32768.0
audio = audio.astype(np.float32)[None, ...]
tokens = m.generate(audio)
tokenizer = tokenizers.Tokenizer.from_file(
os.path.join(MOONSHINE_DEMO_DIR, "..", "assets", "tokenizer.json")
)
text = tokenizer.decode_batch(tokens)
print(text)


if __name__ == "__main__":
parser = argparse.ArgumentParser(
prog="onnx_standalone",
description="Standalone ONNX demo of Moonshine models",
)
parser.add_argument(
"--models_dir", help="Directory containing ONNX files", required=True
)
parser.add_argument("--wav_file", help="Speech WAV file", required=True)
args = parser.parse_args()
main(**vars(args))

0 comments on commit c9e767d

Please sign in to comment.