Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: support adding pdfs as context #5

Merged
merged 3 commits into from
May 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified bun.lockb
Binary file not shown.
Binary file added data/the_wonderful_wizard_of_oz.pdf
Binary file not shown.
6 changes: 4 additions & 2 deletions package.json
Original file line number Diff line number Diff line change
Expand Up @@ -47,13 +47,15 @@
"vitest": "latest"
},
"dependencies": {
"@langchain/community": "^0.0.50",
"@langchain/community": "^0.2.1",
"@langchain/core": "^0.1.58",
"@langchain/openai": "^0.0.28",
"@upstash/ratelimit": "^1.1.3",
"@upstash/redis": "^1.31.1",
"@upstash/vector": "^1.1.1",
"ai": "^3.1.1",
"nanoid": "^5.0.7"
"langchain": "^0.2.0",
"nanoid": "^5.0.7",
"pdf-parse": "^1.1.1"
}
}
93 changes: 70 additions & 23 deletions src/rag-chat.test.ts
Original file line number Diff line number Diff line change
@@ -1,16 +1,15 @@
/* eslint-disable @typescript-eslint/no-non-null-assertion */
import type { AIMessage } from "@langchain/core/messages";
import { PromptTemplate } from "@langchain/core/prompts";
import { ChatOpenAI } from "@langchain/openai";
import { Ratelimit } from "@upstash/ratelimit";
import { Redis } from "@upstash/redis";
import { Index } from "@upstash/vector";
import type { StreamingTextResponse } from "ai";
import { sleep } from "bun";
import { afterAll, beforeAll, describe, expect, test } from "bun:test";
import { RAGChat } from "./rag-chat";
import { Index } from "@upstash/vector";
import { Redis } from "@upstash/redis";
import { Ratelimit } from "@upstash/ratelimit";
import { RatelimitUpstashError } from "./error/ratelimit";
import { PromptTemplate } from "@langchain/core/prompts";
import { delay } from "./utils";
import { RAGChat } from "./rag-chat";
import { awaitUntilIndexed } from "./test-utils";

describe("RAG Chat with advance configs and direct instances", () => {
const vector = new Index({
Expand All @@ -34,12 +33,11 @@ describe("RAG Chat with advance configs and direct instances", () => {
});

beforeAll(async () => {
await ragChat.addContext(
"Paris, the capital of France, is renowned for its iconic landmark, the Eiffel Tower, which was completed in 1889 and stands at 330 meters tall.",
"text"
);
//eslint-disable-next-line @typescript-eslint/no-magic-numbers
await sleep(3000);
await ragChat.addContext({
dataType: "text",
data: "Paris, the capital of France, is renowned for its iconic landmark, the Eiffel Tower, which was completed in 1889 and stands at 330 meters tall.",
});
await awaitUntilIndexed(vector);
});

afterAll(async () => await vector.reset());
Expand Down Expand Up @@ -98,11 +96,13 @@ describe("RAG Chat with ratelimit", () => {
"should throw ratelimit error",
async () => {
await ragChat.addContext(
"Paris, the capital of France, is renowned for its iconic landmark, the Eiffel Tower, which was completed in 1889 and stands at 330 meters tall.",
"text"
{
dataType: "text",
data: "Paris, the capital of France, is renowned for its iconic landmark, the Eiffel Tower, which was completed in 1889 and stands at 330 meters tall.",
},
{ metadataKey: "text" }
);
//eslint-disable-next-line @typescript-eslint/no-magic-numbers
await sleep(3000);
await awaitUntilIndexed(vector);

await ragChat.chat(
"What year was the construction of the Eiffel Tower completed, and what is its height?",
Expand All @@ -120,11 +120,12 @@ describe("RAG Chat with ratelimit", () => {
});

describe("RAG Chat with custom template", () => {
const vector = new Index({
token: process.env.UPSTASH_VECTOR_REST_TOKEN!,
url: process.env.UPSTASH_VECTOR_REST_URL!,
});
const ragChat = new RAGChat({
vector: new Index({
token: process.env.UPSTASH_VECTOR_REST_TOKEN!,
url: process.env.UPSTASH_VECTOR_REST_URL!,
}),
vector,
redis: new Redis({
token: process.env.UPSTASH_REDIS_REST_TOKEN!,
url: process.env.UPSTASH_REDIS_REST_URL!,
Expand All @@ -142,11 +143,14 @@ describe("RAG Chat with custom template", () => {
test(
"should get result without streaming",
async () => {
await ragChat.addContext("Ankara is the capital of Turkiye.");
await ragChat.addContext(
{ dataType: "text", data: "Ankara is the capital of Turkiye." },
{ metadataKey: "text" }
);

// Wait for it to be indexed
// eslint-disable-next-line @typescript-eslint/no-magic-numbers
await delay(3000);
await awaitUntilIndexed(vector);

const result = (await ragChat.chat("Where is the capital of Turkiye?", {
stream: false,
Expand All @@ -157,3 +161,46 @@ describe("RAG Chat with custom template", () => {
{ timeout: 30_000 }
);
});

describe("RAG Chat addContext using PDF", () => {
const vector = new Index({
token: process.env.UPSTASH_VECTOR_REST_TOKEN!,
url: process.env.UPSTASH_VECTOR_REST_URL!,
});
const redis = new Redis({
token: process.env.UPSTASH_REDIS_REST_TOKEN!,
url: process.env.UPSTASH_REDIS_REST_URL!,
});
const ragChat = new RAGChat({
redis,
vector,
model: new ChatOpenAI({
modelName: "gpt-3.5-turbo",
streaming: false,
verbose: false,
temperature: 0,
apiKey: process.env.OPENAI_API_KEY,
}),
});

afterAll(async () => {
await vector.reset();
});

test(
"should be able to successfully query embedded book",
async () => {
await ragChat.addContext({
dataType: "pdf",
fileSource: "./data/the_wonderful_wizard_of_oz.pdf",
opts: { chunkSize: 500, chunkOverlap: 50 },
});
await awaitUntilIndexed(vector);
const result = (await ragChat.chat("Whats the author of The Wonderful Wizard of Oz?", {
stream: false,
})) as AIMessage;
expect(result.content).toContain("Frank");
},
{ timeout: 30_000 }
);
});
40 changes: 32 additions & 8 deletions src/rag-chat.ts
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@ import { RatelimitUpstashError } from "./error/ratelimit";

import type { Config } from "./config";
import { RAGChatBase } from "./rag-chat-base";
import type { AddContextPayload } from "./services";
import type { AddContextOptions, AddContextPayload } from "./services";
import { HistoryService, RetrievalService } from "./services";
import { RateLimitService } from "./services/ratelimit";
import type { ChatOptions } from "./types";
Expand All @@ -34,8 +34,18 @@ export class RAGChat extends RAGChatBase {
this.#ratelimitService = ratelimitService;
}

/**
* A method that allows you to chat LLM using Vector DB as your knowledge store and Redis - optional - as a chat history.
*
* @example
* ```typescript
* await ragChat.chat("Where is the capital of Turkiye?", {
* stream: false,
* })
* ```
*/
async chat(input: string, options: ChatOptions): Promise<StreamingTextResponse | AIMessage> {
// Adds chat session id and ratelimit session id if not provided.
// Adds all the necessary default options that users can skip in the options parameter above.
const options_ = appendDefaultsIfNeeded(options);

// Checks ratelimit of the user. If not enabled `success` will be always true.
Expand Down Expand Up @@ -65,12 +75,26 @@ export class RAGChat extends RAGChatBase {
: this.chainCall(options_, question, facts);
}

/** Context can be either plain text or embeddings */
async addContext(context: AddContextPayload[] | string, metadataKey = "text") {
const retrievalServiceStatus = await this.retrievalService.addEmbeddingOrTextToVectorDb(
context,
metadataKey
);
/**
* A method that allows you to add various data types into a vector database.
* It supports plain text, embeddings, PDF, and CSV. Additionally, it handles text-splitting for CSV and PDF.
*
* @example
* ```typescript
* await addDataToVectorDb({
* dataType: "pdf",
* fileSource: "./data/the_wonderful_wizard_of_oz.pdf",
* opts: { chunkSize: 500, chunkOverlap: 50 },
* });
* // OR
* await addDataToVectorDb({
* dataType: "text",
* data: "Paris, the capital of France, is renowned for its iconic landmark, the Eiffel Tower, which was completed in 1889 and stands at 330 meters tall.",
* });
* ```
*/
async addContext(context: AddContextPayload, options?: AddContextOptions) {
const retrievalServiceStatus = await this.retrievalService.addDataToVectorDb(context, options);
return retrievalServiceStatus === "Success" ? "OK" : "NOT-OK";
}

Expand Down
100 changes: 71 additions & 29 deletions src/services/retrieval.ts
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,26 @@ import { nanoid } from "nanoid";
import { DEFAULT_METADATA_KEY, DEFAULT_SIMILARITY_THRESHOLD, DEFAULT_TOP_K } from "../constants";
import { formatFacts } from "../utils";
import type { Index } from "@upstash/vector";
import { PDFLoader } from "@langchain/community/document_loaders/fs/pdf";
import type { RecursiveCharacterTextSplitterParams } from "langchain/text_splitter";
import { RecursiveCharacterTextSplitter } from "langchain/text_splitter";

export type AddContextPayload = { input: string | number[]; id?: string; metadata?: string };
type IndexUpsertPayload = { input: number[]; id?: string | number; metadata?: string };
type FilePath = string;

export type AddContextPayload =
| { dataType: "text"; data: string; id?: string | number }
| { dataType: "embedding"; data: IndexUpsertPayload[] }
ogzhanolguncu marked this conversation as resolved.
Show resolved Hide resolved
| {
dataType: "pdf";
fileSource: FilePath | Blob;
opts?: Partial<RecursiveCharacterTextSplitterParams>;
}
| { dataType: "csv"; fileSource: FilePath | Blob };

export type AddContextOptions = {
metadataKey?: string;
};

export type RetrievePayload = {
question: string;
Expand All @@ -18,6 +36,11 @@ export class RetrievalService {
this.index = index;
}

/**
* A method that allows you to query the vector database with plain text.
* It takes care of the text-to-embedding conversion by itself.
* Additionally, it lets consumers pass various options to tweak the output.
*/
async retrieveFromVectorDb({
question,
similarityThreshold = DEFAULT_SIMILARITY_THRESHOLD,
Expand All @@ -38,9 +61,9 @@ export class RetrievalService {

if (allValuesUndefined) {
throw new TypeError(`
Query to the vector store returned ${result.length} vectors but none had "${metadataKey}" field in their metadata.
Text of your vectors should be in the "${metadataKey}" field in the metadata for the RAG Chat.
`);
Query to the vector store returned ${result.length} vectors but none had "${metadataKey}" field in their metadata.
Text of your vectors should be in the "${metadataKey}" field in the metadata for the RAG Chat.
`);
}

const facts = result
Expand All @@ -51,32 +74,51 @@ export class RetrievalService {
return formatFacts(facts);
}

async addEmbeddingOrTextToVectorDb(
input: AddContextPayload[] | string,
metadataKey = "text"
): Promise<string> {
if (typeof input === "string") {
return this.index.upsert({
data: input,
id: nanoid(),
metadata: { [metadataKey]: input },
});
}
const items = input.map((context) => {
const isText = typeof context.input === "string";
const metadata = context.metadata
? { [metadataKey]: context.metadata }
: isText
? { [metadataKey]: context.input }
: {};
/**
* A method that allows you to add various data types into a vector database.
* It supports plain text, embeddings, PDF, and CSV. Additionally, it handles text-splitting for CSV and PDF.
*/
async addDataToVectorDb(
input: AddContextPayload,
options?: AddContextOptions
): Promise<string | undefined> {
const { metadataKey = "text" } = options ?? {};

return {
[isText ? "data" : "vector"]: context.input,
id: context.id ?? nanoid(),
metadata,
};
});
switch (input.dataType) {
case "text": {
return this.index.upsert({
data: input.data,
id: input.id ?? nanoid(),
metadata: { [metadataKey]: input.data },
});
}
case "embedding": {
const items = input.data.map((context) => {
return {
vector: context.input,
id: context.id ?? nanoid(),
metadata: { [metadataKey]: context.metadata },
};
});

return this.index.upsert(items);
}
case "pdf": {
const loader = new PDFLoader(input.fileSource);
const documents = await loader.load();

// Users will be able to pass options like chunkSize,chunkOverlap when calling addContext from RAGChat instance directly.
const splitter = new RecursiveCharacterTextSplitter(input.opts);

return this.index.upsert(items);
const splittedDocuments = await splitter.splitDocuments(documents);
const upsertPayload = splittedDocuments.map((document) => ({
data: document.pageContent,
metadata: { [metadataKey]: document.pageContent },
id: nanoid(),
}));

return this.index.upsert(upsertPayload);
}
}
}
}
24 changes: 24 additions & 0 deletions src/test-utils.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
/* eslint-disable @typescript-eslint/no-magic-numbers */
import type { Index } from "@upstash/vector";
import { sleep } from "bun";

export const awaitUntilIndexed = async (client: Index, timeoutMillis = 10_000) => {
const start = performance.now();

const getInfo = async () => {
return await client.info();
};

do {
const info = await getInfo();
if (info.pendingVectorCount === 0) {
// OK, nothing more to index.
return;
}

// Not indexed yet, sleep a bit and check again if the timeout is not passed.
await sleep(1000);
} while (performance.now() < start + timeoutMillis);

throw new Error(`Indexing is not completed in ${timeoutMillis} ms.`);
};